
SemiPar
 Referenced in 640 articles
[sw07116]
 package SemiPar: Semiparametic Regression. The primary aim of this book is to guide researchers needing ... flexibly incorporate nonlinear relations into their regression analyses. Almost all existing regression texts treat either ... parametric or nonparametric regression exclusively. In this book the authors argue that nonparametric regression ... relatively simple extension of parametric regression and treat the two together. They refer to this...

KernSmooth
 Referenced in 878 articles
[sw04586]
 nonparametric curve estimation setting, namely density and regression estimation. Special attention is given...

glmnet
 Referenced in 422 articles
[sw08159]
 elasticnet regularization path for linear regression, logistic and multinomial regression models, poisson regression...

SAS/STAT
 Referenced in 391 articles
[sw18788]
 statistical analyses, including analysis of variance, regression, categorical data analysis, multivariate analysis, survival analysis, psychometric...

robustbase
 Referenced in 369 articles
[sw07114]
 analyze data with robust methods. This includes regression methodology including model selections and multivariate statistics...

alr3
 Referenced in 257 articles
[sw04474]
 alr3: Data to accompany Applied Linear Regression 3rd edition , This package is a companion ... textbook S. Weisberg (2005), ”Applied Linear Regression,” 3rd edition, Wiley. It includes all the data...

gss
 Referenced in 252 articles
[sw06099]
 unified framework. Methods are developed for (i) regression with Gaussian and nonGaussian responses ... popular S/S PLUS language. Code for regression has been distributed in the R package...

Trilinos
 Referenced in 337 articles
[sw04028]
 builds across multiple platforms, generating documentation and regression testing across a set of target platforms...

SVMlight
 Referenced in 257 articles
[sw04076]
 pattern recognition, for the problem of regression, and for the problem of learning a ranking...

randomForest
 Referenced in 143 articles
[sw10639]
 Cutler’s random forests for classification and regression. Classification and regression based on a forest...

UTA Plus
 Referenced in 138 articles
[sw16225]
 procedure, based on a principle of ordinal regression, consist in solving a small linear program ... sensitivity analysis of the ordinal regression problem. There is a friendly user interface in which...

CAViaR
 Referenced in 133 articles
[sw04424]
 CAViaR: Conditional autoregressive value at risk by regression quantiles. Value at risk ... autoregressive process and estimates the parameters with regression quantiles. Utilizing the criterion that each period...

KNITRO
 Referenced in 165 articles
[sw00490]
 nonconvex. It is also effective for nonlinear regression, problems with complementarity constraints (MPCCs or MPECs...

VisualUTA
 Referenced in 101 articles
[sw16231]
 Ordinal regression revisited: multiple criteria ranking with a set of additive value functions. VisualUTA ... value functions which result from an ordinal regression. The preference information provided by the decision ... alternatives. The preference model built via ordinal regression is a set of all additive value...

rpart
 Referenced in 115 articles
[sw07115]
 package rpart: Recursive Partitioning. Recursive partitioning and regression trees. Recursive partitioning for classification, regression...

rms
 Referenced in 80 articles
[sw04532]
 package rms: Regression Modeling Strategies , Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting ... contains functions for binary and ordinal logistic regression models and the BuckleyJames multiple regression ... linear models. rms works with almost any regression model, but it was especially written ... work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear...

nlmdl
 Referenced in 112 articles
[sw27811]
 least squares estimates for a univariate nonlinear regression model and generalized least squares estimates ... multivariate nonlinear regression model. Use the SUR option for both. Other options...

MICE
 Referenced in 109 articles
[sw09315]
 predictive mean matching, normal), binary data (logistic regression), unordered categorical data (polytomous logistic regression...

LIBLINEAR
 Referenced in 126 articles
[sw04880]
 largescale linear classification. It supports logistic regression and linear support vector machines. We provide...

SVMTorch
 Referenced in 66 articles
[sw12121]
 SVMTorch: Support vector machines for largescale regression problems. Support Vector Machines (SVMs) for regression ... classification problems, but adapted to regression problems. With this algorithm, one can now efficiently solve ... largescale regression problems (more than 20000 examples). Comparisons with Nodelib, another publicly available ... algorithm for largescale regression problems from G. Flake and S. Lawrence [Mach. Learn...