Reduze

Reduze – Feynman integral reduction in C++. Reduze is a computer program for reducing Feynman integrals to master integrals employing a variant of Laporta’s reduction algorithm. This web page presents version 2 of the program. New features include the distributed reduction of single topologies on multiple processor cores. The parallel reduction of different topologies is supported via a modular, load balancing job system. Fast graph and matroid based algorithms allow for the identification of equivalent topologies and integrals. Reduze uses GiNaC or, optionally, Fermat to perform manipulations of algebraic expressions.


References in zbMATH (referenced in 57 articles , 1 standard article )

Showing results 1 to 20 of 57.
Sorted by year (citations)

1 2 3 next

  1. Ablinger, J.; Blümlein, J.; De Freitas, A.; van Hoeij, M.; Imamoglu, E.; Raab, C. G.; Radu, C.-S.; Schneider, C.: Iterated elliptic and hypergeometric integrals for Feynman diagrams (2018)
  2. Blümlein, Johannes; Schneider, Carsten: Analytic computing methods for precision calculations in quantum field theory (2018)
  3. Boels, Rutger H.; Huber, Tobias; Yang, Gang: The Sudakov form factor at four loops in maximal super Yang-Mills theory (2018)
  4. Boels, Rutger H.; Luo, Hui: A minimal approach to the scattering of physical massless bosons (2018)
  5. Böhm, Janko; Georgoudis, Alessandro; Larsen, Kasper J.; Schönemann, Hans; Zhang, Yang: Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections (2018)
  6. Borowka, Sophia; Gehrmann, Thomas; Hulme, Daniel: Systematic approximation of multi-scale Feynman integrals (2018)
  7. Gehrmann, T.; Henn, J. M.; Lo Presti, N. A.: Pentagon functions for massless planar scattering amplitudes (2018)
  8. Wang, Guoxing; Xu, Xiaofeng; Yang, Li Lin; Zhu, Hua Xing: The next-to-next-to-leading order soft function for top quark pair production (2018)
  9. Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.: The three-loop splitting functions $P_q g^(2)$ and $P_g g^(2, \operatornameN_\operatornameF)$ (2017)
  10. Banerjee, Pulak; Dhani, Prasanna K.; Mahakhud, Maguni; Ravindran, V.; Seth, Satyajit: Finite remainders of the Konishi at two loops in $\mathcalN=4 $ SYM (2017)
  11. Bern, Zvi; Enciso, Michael; Parra-Martinez, Julio; Zeng, Mao: Manifesting enhanced cancellations in supergravity: integrands versus integrals (2017)
  12. Bijnens, Johan; Truedsson, Nils Hermansson: The pion mass and decay constant at three loops in two-flavour chiral perturbation theory (2017)
  13. Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo: Two-loop electroweak corrections to Higgs-gluon couplings to higher orders in the dimensional regularization parameter (2017)
  14. Bosma, Jorrit; Sogaard, Mads; Zhang, Yang: Maximal cuts in arbitrary dimension (2017)
  15. Braun, Vladimir M.; Bruns, Peter C.; Collins, Sara; Gracey, John A.; Gruber, Michael; Göckeler, Meinulf; Hutzler, Fabian; Pérez-Rubio, Paula; Schäfer, Andreas; Söldner, Wolfgang; Sternbeck, André; Wein, Philipp: The $\rho$-meson light-cone distribution amplitudes from lattice QCD (2017)
  16. Harley, Mark; Moriello, Francesco; Schabinger, Robert M.: Baikov-Lee representations of cut Feynman integrals (2017)
  17. Herzog, Franz; Ruijl, Ben: The $R^\ast$-operation for Feynman graphs with generic numerators (2017)
  18. Meyer, Christoph: Transforming differential equations of multi-loop Feynman integrals into canonical form (2017)
  19. Primo, Amedeo; Tancredi, Lorenzo: Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph (2017)
  20. Zeng, Mao: Differential equations on unitarity cut surfaces (2017)

1 2 3 next