Reduze

Reduze – Feynman integral reduction in C++. Reduze is a computer program for reducing Feynman integrals to master integrals employing a variant of Laporta’s reduction algorithm. This web page presents version 2 of the program. New features include the distributed reduction of single topologies on multiple processor cores. The parallel reduction of different topologies is supported via a modular, load balancing job system. Fast graph and matroid based algorithms allow for the identification of equivalent topologies and integrals. Reduze uses GiNaC or, optionally, Fermat to perform manipulations of algebraic expressions.


References in zbMATH (referenced in 69 articles , 1 standard article )

Showing results 1 to 20 of 69.
Sorted by year (citations)

1 2 3 4 next

  1. Ablinger, J.; Blümlein, J.; Marquard, P.; Rana, N.; Schneider, C.: Automated solution of first order factorizable systems of differential equations in one variable (2019)
  2. Abreu, Samuel; Page, Ben; Zeng, Mao: Differential equations from unitarity cuts: nonplanar hexa-box integrals (2019)
  3. Ahmed, Taushif; Dhani, Prasanna K.: Two-loop doubly massive four-point amplitude involving a half-BPS and Konishi operator (2019)
  4. Badger, Simon; Brønnum-Hansen, Christian; Hartanto, Heribertus Bayu; Peraro, Tiziano: Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case (2019)
  5. Bitoun, Thomas; Bogner, Christian; Klausen, René Pascal; Panzer, Erik: Feynman integral relations from parametric annihilators (2019)
  6. Chicherin, D.; Gehrmann, T.; Henn, J. M.; Lo Presti, N. A.; Mitev, V.; Wasser, P.: Analytic result for the nonplanar hexa-box integrals (2019)
  7. Chicherin, Dmitry; Gehrmann, Thomas; Henn, Johannes M.; Wasser, Pascal; Zhang, Yang; Zoia, Simone: The two-loop five-particle amplitude in $ \mathcalN=8$ supergravity (2019)
  8. Frellesvig, Hjalte; Gasparotto, Federico; Laporta, Stefano; Mandal, Manoj K.; Mastrolia, Pierpaolo; Mattiazzi, Luca; Mizera, Sebastian: Decomposition of Feynman integrals on the maximal cut by intersection numbers (2019)
  9. Mastrolia, Pierpaolo; Mizera, Sebastian: Feynman integrals and intersection theory (2019)
  10. von Manteuffel, Andreas; Schabinger, Robert M.: Planar master integrals for four-loop form factors (2019)
  11. Ablinger, J.; Blümlein, J.; De Freitas, A.; van Hoeij, M.; Imamoglu, E.; Raab, C. G.; Radu, C.-S.; Schneider, C.: Iterated elliptic and hypergeometric integrals for Feynman diagrams (2018)
  12. Blümlein, Johannes; Schneider, Carsten: Analytic computing methods for precision calculations in quantum field theory (2018)
  13. Boels, Rutger H.; Huber, Tobias; Yang, Gang: The Sudakov form factor at four loops in maximal super Yang-Mills theory (2018)
  14. Boels, Rutger H.; Luo, Hui: A minimal approach to the scattering of physical massless bosons (2018)
  15. Böhm, Janko; Georgoudis, Alessandro; Larsen, Kasper J.; Schönemann, Hans; Zhang, Yang: Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections (2018)
  16. Borowka, Sophia; Gehrmann, Thomas; Hulme, Daniel: Systematic approximation of multi-scale Feynman integrals (2018)
  17. Gehrmann, T.; Henn, J. M.; Lo Presti, N. A.: Pentagon functions for massless planar scattering amplitudes (2018)
  18. Wang, Guoxing; Xu, Xiaofeng; Yang, Li Lin; Zhu, Hua Xing: The next-to-next-to-leading order soft function for top quark pair production (2018)
  19. Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.: The three-loop splitting functions (P_q g^(2)) and (P_g g^(2, \operatornameN_\operatornameF)) (2017)
  20. Banerjee, Pulak; Dhani, Prasanna K.; Mahakhud, Maguni; Ravindran, V.; Seth, Satyajit: Finite remainders of the Konishi at two loops in (\mathcalN=4 ) SYM (2017)

1 2 3 4 next