Reduze

Reduze – Feynman integral reduction in C++. Reduze is a computer program for reducing Feynman integrals to master integrals employing a variant of Laporta’s reduction algorithm. This web page presents version 2 of the program. New features include the distributed reduction of single topologies on multiple processor cores. The parallel reduction of different topologies is supported via a modular, load balancing job system. Fast graph and matroid based algorithms allow for the identification of equivalent topologies and integrals. Reduze uses GiNaC or, optionally, Fermat to perform manipulations of algebraic expressions.


References in zbMATH (referenced in 36 articles , 1 standard article )

Showing results 1 to 20 of 36.
Sorted by year (citations)

1 2 next

  1. Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.: The three-loop splitting functions $P_q g^(2)$ and $P_g g^(2, \operatornameN_\operatornameF)$ (2017)
  2. Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo: Two-loop electroweak corrections to Higgs-gluon couplings to higher orders in the dimensional regularization parameter (2017)
  3. Braun, Vladimir M.; Bruns, Peter C.; Collins, Sara; Gracey, John A.; Gruber, Michael; Göckeler, Meinulf; Hutzler, Fabian; Pérez-Rubio, Paula; Schäfer, Andreas; Söldner, Wolfgang; Sternbeck, André; Wein, Philipp: The $\rho$-meson light-cone distribution amplitudes from lattice QCD (2017)
  4. Meyer, Christoph: Transforming differential equations of multi-loop Feynman integrals into canonical form (2017)
  5. Primo, Amedeo; Tancredi, Lorenzo: Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph (2017)
  6. Alessandro Georgoudis, Kasper J. Larsen, Yang Zhang: Azurite: An algebraic geometry based package for finding bases of loop integrals (2016) arXiv
  7. Boels, Rutger H.; Kniehl, Bernd A.; Yang, Gang: Master integrals for the four-loop Sudakov form factor (2016)
  8. Remiddi, Ettore; Tancredi, Lorenzo: Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral (2016)
  9. Rutger Boels, Bernd A. Kniehl, Gang Yang: Towards a four-loop form factor (2016) arXiv
  10. Borowka, S.; Heinrich, G.; Jones, S.P.; Kerner, M.; Schlenk, J.; Zirke, T.: SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop (2015)
  11. Panzer, Erik: Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals (2015)
  12. Ruijl, B.; Ueda, T.; Vermaseren, J.A.M.: The diamond rule for multi-loop Feynman diagrams (2015)
  13. Smirnov, A.V.: FIRE5: a C++ implementation of Feynman integral REduction (2015)
  14. Tancredi, Lorenzo: Integration by parts identities in integer numbers of dimensions. A criterion for decoupling systems of differential equations (2015)
  15. Argeri, Mario; Di Vita, Stefano; Mastrolia, Pierpaolo; Mirabella, Edoardo; Schlenk, Johannes; Schubert, Ulrich; Tancredi, Lorenzo: Magnus and Dyson series for master integrals (2014)
  16. Caron-Huot, Simon; Henn, Johannes M.: Iterative structure of finite loop integrals (2014)
  17. Foffa, Stefano; Sturani, Riccardo: Effective field theory methods to model compact binaries (2014)
  18. Kant, Philipp: Finding linear dependencies in integration-by-parts equations: a Monte Carlo approach (2014)
  19. Borowka, Sophia; Heinrich, Gudrun: Massive non-planar two-loop four-point integrals with SecDec 2.1 (2013)
  20. Henn, Johannes M.; Smirnov, Alexander V.; Smirnov, Vladimir A.: Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation (2013)

1 2 next