Reduze – Feynman integral reduction in C++. Reduze is a computer program for reducing Feynman integrals to master integrals employing a variant of Laporta’s reduction algorithm. This web page presents version 2 of the program. New features include the distributed reduction of single topologies on multiple processor cores. The parallel reduction of different topologies is supported via a modular, load balancing job system. Fast graph and matroid based algorithms allow for the identification of equivalent topologies and integrals. Reduze uses GiNaC or, optionally, Fermat to perform manipulations of algebraic expressions.

References in zbMATH (referenced in 26 articles , 1 standard article )

Showing results 1 to 20 of 26.
Sorted by year (citations)

1 2 next

  1. Boels, Rutger H.; Kniehl, Bernd A.; Yang, Gang: Master integrals for the four-loop Sudakov form factor (2016)
  2. Remiddi, Ettore; Tancredi, Lorenzo: Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral (2016)
  3. Panzer, Erik: Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals (2015)
  4. Ruijl, B.; Ueda, T.; Vermaseren, J.A.M.: The diamond rule for multi-loop Feynman diagrams (2015)
  5. Smirnov, A.V.: FIRE5: a C++ implementation of Feynman integral REduction (2015)
  6. Tancredi, Lorenzo: Integration by parts identities in integer numbers of dimensions. A criterion for decoupling systems of differential equations (2015)
  7. Argeri, Mario; Di Vita, Stefano; Mastrolia, Pierpaolo; Mirabella, Edoardo; Schlenk, Johannes; Schubert, Ulrich; Tancredi, Lorenzo: Magnus and Dyson series for master integrals (2014)
  8. Caron-Huot, Simon; Henn, Johannes M.: Iterative structure of finite loop integrals (2014)
  9. Foffa, Stefano; Sturani, Riccardo: Effective field theory methods to model compact binaries (2014)
  10. Kant, Philipp: Finding linear dependencies in integration-by-parts equations: a Monte Carlo approach (2014)
  11. Henn, Johannes M.; Smirnov, Alexander V.; Smirnov, Vladimir A.: Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation (2013)
  12. Lee, Roman N.; Pomeransky, Andrei A.: Critical points and number of master integrals (2013)
  13. Smirnov, A.V.; Smirnov, V.A.: FIRE4, LiteRed and accompanying tools to solve integration by parts relations (2013)
  14. Søgaard, Mads; Zhang, Yang: Multivariate residues and maximal unitarity (2013)
  15. Feng, Feng: $ Apart: a generalized Mathematica Apart function (2012)
  16. Gehrmann, Thomas; Henn, Johannes M.; Huber, Tobias: The three-loop form factor in $\mathcalN = 4$ super Yang-Mills (2012)
  17. Gehrmann, Thomas; Tancredi, Lorenzo: Two-loop QCD helicity amplitudes for $q\overlineq \to W^\pm\gamma$ and $q\overlineq \to Z^0\gamma$ (2012)
  18. Gehrmann, T.; Jaquier, M.; Glover, E.W.N.; Koukoutsakis, A.: Two-loop QCD corrections to the helicity amplitudes for $H \to 3\;\textpartons$ (2012)
  19. Müller-Stach, Stefan; Weinzierl, Stefan; Zayadeh, Raphael: A second-order differential equation for the two-loop sunrise graph with arbitrary masses (2012)
  20. Schabinger, Robert M.: A new algorithm for the generation of unitarity-compatible integration by parts relations (2012)

1 2 next