FIRE

Algorithm FIRE-Feynman integral reduction. The recently developed algorithm FIRE performs the reduction of Feynman integrals to master integrals. It is based on a number of strategies, such as applying the Laporta algorithm, the s-bases algorithm, region-bases and integrating explicitly over loop momenta when possible. Currently it is being used in complicated three-loop calculations.


References in zbMATH (referenced in 27 articles , 1 standard article )

Showing results 1 to 20 of 27.
Sorted by year (citations)

1 2 next

  1. Berezhnoy, A.V.; Likhoded, A.K.; Onishchenko, A.I.; Poslavsky, S.V.: Next-to-leading order QCD corrections to paired $B_c$ production in $e^+e^-$ annihilation (2017)
  2. Bianchi, Marco S.; Griguolo, Luca; Mauri, Andrea; Penati, Silvia; Preti, Michelangelo; Seminara, Domenico: Towards the exact Bremsstrahlung function of ABJM theory (2017)
  3. Bianchi, Marco S.; Mauri, Andrea: ABJM $\theta$-bremsstrahlung at four loops and beyond: non-planar corrections (2017)
  4. Bianchi, Marco S.; Mauri, Andrea: ABJM $\theta$-bremsstrahlung at four loops and beyond (2017)
  5. Davies, Joshua; Steinhauser, Matthias; Wellmann, David: Completing the hadronic Higgs boson decay at order $\alpha_s^4$ (2017)
  6. Grozin, Andrey; Henn, Johannes; Stahlhofen, Maximilian: On the Casimir scaling violation in the cusp anomalous dimension at small angle (2017)
  7. Hasselhuhn, Alexander; Luthe, Thomas; Steinhauser, Matthias: On top quark mass effects to $gg \rightarrow ZH$ at NLO (2017)
  8. Henn, Johannes; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias: Massive three-loop form factor in the planar limit (2017)
  9. Kalmykov, Mikhail Yu.; Kniehl, Bernd A.: Counting the number of master integrals for sunrise diagrams via the Mellin-Barnes representation (2017)
  10. Alessandro Georgoudis, Kasper J. Larsen, Yang Zhang: Azurite: An algebraic geometry based package for finding bases of loop integrals (2016) arXiv
  11. Boels, Rutger H.; Kniehl, Bernd A.; Yang, Gang: Master integrals for the four-loop Sudakov form factor (2016)
  12. Feng, Feng: APart 2: a generalized Mathematica Apart function (2016)
  13. Rutger Boels, Bernd A. Kniehl, Gang Yang: Towards a four-loop form factor (2016) arXiv
  14. Borowka, S.; Heinrich, G.; Jones, S.P.; Kerner, M.; Schlenk, J.; Zirke, T.: SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop (2015)
  15. Grigo, Jonathan; Hoff, Jens; Steinhauser, Matthias: Higgs boson pair production: top quark mass effects at NLO and NNLO (2015)
  16. Panzer, Erik: Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals (2015)
  17. Ruijl, B.; Ueda, T.; Vermaseren, J.A.M.: The diamond rule for multi-loop Feynman diagrams (2015)
  18. Smirnov, A.V.: FIRE5: a C++ implementation of Feynman integral REduction (2015)
  19. Caron-Huot, Simon; Henn, Johannes M.: Iterative structure of finite loop integrals (2014)
  20. Kant, Philipp: Finding linear dependencies in integration-by-parts equations: a Monte Carlo approach (2014)

1 2 next