References in zbMATH (referenced in 51 articles )

Showing results 1 to 20 of 51.
Sorted by year (citations)

1 2 3 next

  1. Giuseppe Casalicchio, Jakob Bossek, Michel Lang, Dominik Kirchhoff, Pascal Kerschke, Benjamin Hofner, Heidi Seibold, Joaquin Vanschoren, Bernd Bischl: OpenML: An R Package to Connect to the Networked Machine Learning Platform OpenML (2017) arXiv
  2. Marjolein Fokkema: pre: An R Package for Fitting Prediction Rule Ensembles (2017) arXiv
  3. Angelopoulos, Nicos; Abdallah, Samer; Giamas, Georgios: Advances in integrative statistics for logic programming (2016)
  4. Arlot, Sylvain; Genuer, Robin: Comments on: “A random forest guided tour” (2016)
  5. Bellio, Ruggero; Ceschia, Sara; Di Gaspero, Luca; Schaerf, Andrea; Urli, Tommaso: Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem (2016)
  6. Biau, Gérard; Fischer, Aurélie; Guedj, Benjamin; Malley, James D.: COBRA: a combined regression strategy (2016)
  7. Biau, Gérard; Scornet, Erwan: A random forest guided tour (2016)
  8. Bischl, Bernd; Kerschke, Pascal; Kotthoff, Lars; Lindauer, Marius; Malitsky, Yuri; Fréchette, Alexandre; Hoos, Holger; Hutter, Frank; Leyton-Brown, Kevin; Tierney, Kevin; Vanschoren, Joaquin: ASlib: a benchmark library for algorithm selection (2016)
  9. Blaser, Rico; Fryzlewicz, Piotr: Random rotation ensembles (2016)
  10. Dutta, Subhajit; Ghosh, Anil K.: On some transformations of high dimension, low sample size data for nearest neighbor classification (2016)
  11. Guhaniyogi, Rajarshi; Dunson, David B.: Compressed Gaussian process for manifold regression (2016)
  12. Mark O’Connell, Catherine B. Hurley, Katarina Domijan: Conditional Visualization for Statistical Models: An Introduction to the condvis Package in R (2016) arXiv
  13. Scornet, Erwan: On the asymptotics of random forests (2016)
  14. Tutz, Gerhard; Koch, Dominik: Improved nearest neighbor classifiers by weighting and selection of predictors (2016)
  15. Tutz, Gerhard; Schmid, Matthias: Modeling discrete time-to-event data (2016)
  16. Ballings, Michel; Van den Poel, Dirk: CRM in social media: predicting increases in Facebook usage frequency (2015)
  17. Bertsimas, Dimitris; Brynjolfsson, Erik; Reichman, Shachar; Silberholz, John: OR forum: Tenure analytics: models for predicting research impact (2015)
  18. Bontempi, Gianluca; Flauder, Maxime: From dependency to causality: a machine learning approach (2015)
  19. Cichosz, Paweł: Data mining algorithms. Explained using R (2015)
  20. Kapelner, Adam; Bleich, Justin: Prediction with missing data via Bayesian additive regression trees (2015)

1 2 3 next