References in zbMATH (referenced in 98 articles )

Showing results 1 to 20 of 98.
Sorted by year (citations)

1 2 3 4 5 next

  1. Ablinger, J.; Blümlein, J.; Marquard, P.; Rana, N.; Schneider, C.: Automated solution of first order factorizable systems of differential equations in one variable (2019)
  2. Bitoun, Thomas; Bogner, Christian; Klausen, René Pascal; Panzer, Erik: Feynman integral relations from parametric annihilators (2019)
  3. Frellesvig, Hjalte; Gasparotto, Federico; Laporta, Stefano; Mandal, Manoj K.; Mastrolia, Pierpaolo; Mattiazzi, Luca; Mizera, Sebastian: Decomposition of Feynman integrals on the maximal cut by intersection numbers (2019)
  4. von Manteuffel, Andreas; Schabinger, Robert M.: Planar master integrals for four-loop form factors (2019)
  5. Ablinger, J.; Blümlein, J.; De Freitas, A.; Goedicke, A.; Schneider, C.; Schönwald, K.: The two-mass contribution to the three-loop gluonic operator matrix element (A_g g, Q^(3)) (2018)
  6. Gituliar, O.; Magerya, V.; Pikelner, A.: Five-particle phase-space integrals in QCD (2018)
  7. Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.: The three-loop splitting functions (P_q g^(2)) and (P_g g^(2, \operatornameN_\operatornameF)) (2017)
  8. Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; Schneider, C.; Wißbrock, F.: Three loop massive operator matrix elements and asymptotic Wilson coefficients with two different masses (2017)
  9. Bosma, Jorrit; Sogaard, Mads; Zhang, Yang: Maximal cuts in arbitrary dimension (2017)
  10. Ellis, Joshua P.: Ti(k)Z-Feynman: Feynman diagrams with Ti(k)Z (2017)
  11. Harley, Mark; Moriello, Francesco; Schabinger, Robert M.: Baikov-Lee representations of cut Feynman integrals (2017)
  12. Kißler, Henry; Kreimer, Dirk: Diagrammatic cancellations and the gauge dependence of QED (2017)
  13. Luthe, Thomas; Maier, Andreas; Marquard, Peter; Schröder, York: Five-loop quark mass and field anomalous dimensions for a general gauge group (2017)
  14. Mario Prausa: epsilon: A tool to find a canonical basis of master integrals (2017) arXiv
  15. Meyer, Christoph: Transforming differential equations of multi-loop Feynman integrals into canonical form (2017)
  16. Moch, S.; Ruijl, B.; Ueda, T.; Vermaseren, J. A. M.; Vogt, A.: Four-loop non-singlet splitting functions in the planar limit and beyond (2017)
  17. Ruijl, B.; Ueda, T.; Vermaseren, J. A. M.; Vogt, A.: Four-loop QCD propagators and vertices with one vanishing external momentum (2017)
  18. Beneke, M.; Moch, P.; Rohrwild, J.: Lepton flavour violation in RS models with a brane- or nearly brane-localized Higgs (2016)
  19. Blümlein, Johannes; Falcioni, Giulio; De Freitas, Abilio: The complete (O(\alpha_s^2)) non-singlet heavy flavor corrections to the structure functions (g_1, 2^e p(x, Q^2)), (F_1, 2, L^e p(x, Q^2)), (F_1, 2, 3^\nu(\overline\nu)(x, Q^2)) and the associated sum rules (2016)
  20. Boels, Rutger H.; Horst, Christoph: Perturbative quantum gravity in double field theory (2016)

1 2 3 4 5 next