AceGen: Multi-language, Multi-environment Numerical Code Generation. The Mathematica package AceGen is used for the automatic derivation of formulae needed in numerical procedures. An approach, implemented in AceGen, avoids the problem of expression swell by combining: symbolic and algebraic capabilities of Mathematica, automatic differentiation technique, automatic code generation and simultaneous optimization of expressions. The multi-language capabilities of AceGen (C, FORTRAN, Mathematica©, Matlab©,..) enable generation of numerical codes for various numerical environments (AceFEM, Matlab©, FEAP©, ABAQUS©, ... ) from the same symbolic description. AceGen alone does NOT include examples and libraries needed for the automation of the Finite Element Method!

References in zbMATH (referenced in 22 articles )

Showing results 1 to 20 of 22.
Sorted by year (citations)

1 2 next

  1. Stanić, Andjelka; Brank, Boštjan; Korelc, Jože: On path-following methods for structural failure problems (2016)
  2. Brank, Boštjan; Ibrahimbegović, Adnan; Bohinc, Uroš: On discrete-Kirchhoff plate finite elements: implementation and discretization error (2015)
  3. Šolinc, Urša; Korelc, Jože: A simple way to improved formulation of $\textFE^2$ analysis (2015)
  4. Auricchio, Ferdinando; Beirão da Veiga, Lourenço; Lovadina, Carlo; Reali, Alessandro; Taylor, Robert L.; Wriggers, Peter: Approximation of incompressible large deformation elastic problems: some unresolved issues (2013)
  5. Seabra, Mariana R.R.; Šuštarič, Primož; Cesar de Sa, Jose M.A.; Rodič, Tomaž: Damage driven crack initiation and propagation in ductile metals using XFEM (2013)
  6. Lengiewicz, Jakub; Stupkiewicz, Stanisław: Continuum framework for finite element modelling of finite wear (2012)
  7. Seabra, Mariana R.R.; Cesar de Sa, Jose M.A.; Šuštarič, Primož; Rodič, Tomaž: Some numerical issues on the use of XFEM for ductile fracture (2012)
  8. Dujc, Jaka; Brank, Boštjan; Ibrahimbegovic, Adnan: Multi-scale computational model for failure analysis of metal frames that includes softening and local buckling (2010)
  9. Korelc, Jože; Šolinc, Urša; Wriggers, Peter: An improved EAS brick element for finite deformation (2010)
  10. Rodič, Tomaž; Šuštar, Tomaž; Šuštarič, Primož; Korelc, Jože: Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach (2010)
  11. Stupkiewicz, Stanisław; Lengiewicz, Jakub; Korelc, Jože: Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation (2010)
  12. Korelc, Jože: Automation of primal and sensitivity analysis of transient coupled problems (2009)
  13. Stupkiewicz, Stanisław: Finite element treatment of soft elastohydrodynamic lubrication problems in the finite deformation regime (2009)
  14. Brank, Boštjan: Assessment of 4-node EAS-ANS shell elements for large deformation analysis (2008)
  15. Kristanič, Niko; Korelc, Jože: Optimization method for the determination of the most unfavorable imperfection of structures (2008)
  16. Stupkiewicz, Stanisław: Micromechanics of contact and interphase layers. (2007)
  17. Kegl, M.; Brank, B.: Shape optimization of truss-stiffened shell structures with variable thickness (2006)
  18. Wriggers, Peter: Computational contact mechanics. (2006)
  19. Brank, Boštjan: Nonlinear shell models with seven kinematic parameters (2005)
  20. Stupkiewicz, S.: The effect of stacking fault energy on the formation of stress-induced internally faulted martensite plates. (2004)

1 2 next