FEAPpv

FEAPpv A Finite Element Analysis Program: Personal Version. FEAPpv is a general purpose finite element analysis program which is designed for research and educational use (If you are looking for FEAP and not FEAPpv please see www.ce.berkeley.edu/feap). FEAPpv is described in the references: The Finite Element Method: Its Basis and Fundamentals,6th ed., by O.C. Zienkiewicz, R.L. Taylor and J.Z. Zhu, Elsevier, Oxford, 2005, (www.elsevier.com). The Finite Element Method for Solid and Structural Mechanics,6th ed., by O.C. Zienkiewicz and R.L. Taylor, Elsevier, Oxford, 2005, (www.elsevier.com).


References in zbMATH (referenced in 184 articles , 1 standard article )

Showing results 1 to 20 of 184.
Sorted by year (citations)

1 2 3 ... 8 9 10 next

  1. Carita, Graça; Goncharov, Vladimir V.; Smirnov, Georgi V.: Vector variational problem with knitting boundary conditions (2017)
  2. Martínez-Casas, José; Giner-Navarro, Juan; Baeza, L.; Denia, F.D.: Improved railway wheelset-track interaction model in the high-frequency domain (2017)
  3. Stoykov, S.; Margenov, S.: Numerical methods and parallel algorithms for computation of periodic responses of plates (2017)
  4. Vidal-Ferràndiz, A.; González-Pintor, S.; Ginestar, D.; Verdú, G.; Demazière, C.: Schwarz type preconditioners for the neutron diffusion equation (2017)
  5. Chi, Heng; Lopez-Pamies, Oscar; Paulino, Glaucio H.: A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications (2016)
  6. Denia, F.D.; Sánchez-Orgaz, E.M.; Baeza, L.; Kirby, R.: Point collocation scheme in silencers with temperature gradient and mean flow (2016)
  7. Girgis, Bassem R.; Rani, Sarma L.; Frendi, Abdelkader: Flowfield dependent variation method (2016)
  8. Hu, Jun; Zhang, Shangyou: Finite element approximations of symmetric tensors on simplicial grids in $\mathbbR^n$: the lower order case (2016)
  9. Jebahi, Mohamed; Dau, Frédéric; Charles, Jean-Luc; Iordanoff, Ivan: Multiscale modeling of complex dynamic problems: an overview and recent developments (2016)
  10. Sousbie, Thierry; Colombi, Stéphane: ColDICE: A parallel Vlasov-Poisson solver using moving adaptive simplicial tessellation (2016)
  11. Stoykov, S.; Margenov, S.: Scalable parallel implementation of shooting method for large-scale dynamical systems. Application to bridge components (2016)
  12. Stykel, Tatjana; Vasilyev, Alexander: A two-step model reduction approach for mechanical systems with moving loads (2016)
  13. Vidal-Ferràndiz, A.; Fayez, R.; Ginestar, D.; Verdú, G.: Moving meshes to solve the time-dependent neutron diffusion equation in hexagonal geometry (2016)
  14. Zayernouri, Mohsen; Matzavinos, Anastasios: Fractional Adams-Bashforth/Moulton methods: an application to the fractional Keller-Segel chemotaxis system (2016)
  15. Apostolatos, Andreas; Breitenberger, Michael; Wüchner, Roland; Bletzinger, Kai-Uwe: Domain decomposition methods and Kirchhoff-Love shell multipatch coupling in isogeometric analysis (2015)
  16. Balzani, Daniel; Gandhi, Ashutosh; Tanaka, Masato; Schröder, Jörg: Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices (2015)
  17. Bianchini, Ilaria; Argiento, Raffaele; Auricchio, Ferdinando; Lanzarone, Ettore: Efficient uncertainty quantification in stochastic finite element analysis based on functional principal components (2015)
  18. Casoni, E.; Jérusalem, A.; Samaniego, C.; Eguzkitza, B.; Lafortune, P.; Tjahjanto, D.D.; Sáez, X.; Houzeaux, G.; Vázquez, M.: Alya: computational solid mechanics for supercomputers (2015)
  19. Chen, Yao; Feng, Jian: Group-theoretic method for efficient buckling analysis of prestressed space structures (2015)
  20. Dargush, Gary F.; Darrall, Bradley T.; Kim, Jinkyu; Apostolakis, Georgios: Mixed convolved action principles in linear continuum dynamics (2015)

1 2 3 ... 8 9 10 next