FEAPpv A Finite Element Analysis Program: Personal Version. FEAPpv is a general purpose finite element analysis program which is designed for research and educational use (If you are looking for FEAP and not FEAPpv please see www.ce.berkeley.edu/feap). FEAPpv is described in the references: The Finite Element Method: Its Basis and Fundamentals,6th ed., by O.C. Zienkiewicz, R.L. Taylor and J.Z. Zhu, Elsevier, Oxford, 2005, (www.elsevier.com). The Finite Element Method for Solid and Structural Mechanics,6th ed., by O.C. Zienkiewicz and R.L. Taylor, Elsevier, Oxford, 2005, (www.elsevier.com).

References in zbMATH (referenced in 165 articles , 1 standard article )

Showing results 1 to 20 of 165.
Sorted by year (citations)

1 2 3 ... 7 8 9 next

  1. Chi, Heng; Lopez-Pamies, Oscar; Paulino, Glaucio H.: A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications (2016)
  2. Denia, F.D.; Sánchez-Orgaz, E.M.; Baeza, L.; Kirby, R.: Point collocation scheme in silencers with temperature gradient and mean flow (2016)
  3. Hu, Jun; Zhang, Shangyou: Finite element approximations of symmetric tensors on simplicial grids in $\mathbbR^n$: the lower order case (2016)
  4. Stoykov, S.; Margenov, S.: Scalable parallel implementation of shooting method for large-scale dynamical systems. Application to bridge components (2016)
  5. Stykel, Tatjana; Vasilyev, Alexander: A two-step model reduction approach for mechanical systems with moving loads (2016)
  6. Vidal-Ferràndiz, A.; Fayez, R.; Ginestar, D.; Verdú, G.: Moving meshes to solve the time-dependent neutron diffusion equation in hexagonal geometry (2016)
  7. Apostolatos, Andreas; Breitenberger, Michael; Wüchner, Roland; Bletzinger, Kai-Uwe: Domain decomposition methods and Kirchhoff-Love shell multipatch coupling in isogeometric analysis (2015)
  8. Balzani, Daniel; Gandhi, Ashutosh; Tanaka, Masato; Schröder, Jörg: Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices (2015)
  9. Bianchini, Ilaria; Argiento, Raffaele; Auricchio, Ferdinando; Lanzarone, Ettore: Efficient uncertainty quantification in stochastic finite element analysis based on functional principal components (2015)
  10. Chen, Yao; Feng, Jian: Group-theoretic method for efficient buckling analysis of prestressed space structures (2015)
  11. Dargush, Gary F.; Darrall, Bradley T.; Kim, Jinkyu; Apostolakis, Georgios: Mixed convolved action principles in linear continuum dynamics (2015)
  12. de Leo, Andrea Matteo; Contento, Alessandro; Di Egidio, Angelo: Semi-analytical approach for the study of linear static behaviour and buckling of shells with single constant curvature (2015)
  13. Jarzebski, P.; Wisniewski, K.; Taylor, R.L.: On parallelization of the loop over elements in FEAP (2015)
  14. Klawonn, Axel; Lanser, Martin; Rheinbach, Oliver: Toward extremely scalable nonlinear domain decomposition methods for elliptic partial differential equations (2015)
  15. Lafontaine, N.M.; Rossi, R.; Cervera, M.; Chiumenti, M.: Explicit mixed strain-displacement finite element for dynamic geometrically non-linear solid mechanics (2015)
  16. Lee, Eunjung; Manteuffel, Thomas A.; Westphal, Chad R.: FOSLL* for nonlinear partial differential equations (2015)
  17. Lülf, Fritz Adrian; Tran, Duc-Minh; Matthies, Hermann G.; Ohayon, Roger: An integrated method for the transient solution of reduced order models of geometrically nonlinear structures (2015)
  18. Matveenko, Valeriy P.; Smetannikov, Oleg Yu.; Trufanov, Nikolay A.; Shardakov, Igor N.: Constitutive relations for viscoelastic materials under thermorelaxation transition (2015)
  19. Ohayon, R.; Soize, C.: Vibration of structures containing compressible liquids with surface tension and sloshing effects. Reduced-order model (2015)
  20. Oh, Hyeon Cheol; Lee, Byung Chai: Higher-order virtual node method for polygonal elements and application of $h$-adaptivity (2015)

1 2 3 ... 7 8 9 next