FEAPpv A Finite Element Analysis Program: Personal Version. FEAPpv is a general purpose finite element analysis program which is designed for research and educational use (If you are looking for FEAP and not FEAPpv please see www.ce.berkeley.edu/feap). FEAPpv is described in the references: The Finite Element Method: Its Basis and Fundamentals,6th ed., by O.C. Zienkiewicz, R.L. Taylor and J.Z. Zhu, Elsevier, Oxford, 2005, (www.elsevier.com). The Finite Element Method for Solid and Structural Mechanics,6th ed., by O.C. Zienkiewicz and R.L. Taylor, Elsevier, Oxford, 2005, (www.elsevier.com).

References in zbMATH (referenced in 409 articles , 1 standard article )

Showing results 1 to 20 of 409.
Sorted by year (citations)

1 2 3 ... 19 20 21 next

  1. Acebrón, Juan A.; Herrero, José R.; Monteiro, José: A highly parallel algorithm for computing the action of a matrix exponential on a vector based on a multilevel Monte Carlo method (2020)
  2. Artioli, E.; Beirão da Veiga, L.; Dassi, F.: Curvilinear virtual elements for 2D solid mechanics applications (2020)
  3. Baier-Saip, J. A.; Baier, P. A.; de Faria, A. R.; Oliveira, J. C.; Baier, H.: Shear locking in one-dimensional finite element methods (2020)
  4. Campos, Lucas Silveira; Loeffler, Carlos Friedrich; Netto, Fabrício Oliveira; dos Santos, Áquila de Jesus: Testing the accomplishment of the radial integration method with the direct interpolation boundary element technique for solving Helmholtz problems (2020)
  5. Choi, Jae-Hoon; Sim, Gi-Dong; Lee, Byung-Chai: A four-node (C^0) tetrahedral element based on the node-based smoothing technique for the modified couple stress theory (2020)
  6. Conley, Rebecca; Delaney, Tristan J.; Jiao, Xiangmin: A hybrid method and unified analysis of generalized finite differences and Lagrange finite elements (2020)
  7. Ding, Chensen; Deokar, Rohit R.; Lian, Haojie; Ding, Yanjun; Li, Guangyao; Cui, Xiangyang; Tamma, Kumar K.; Bordas, Stéphane P. A.: Resolving high frequency issues via proper orthogonal decomposition based dynamic isogeometric analysis for structures with dissimilar materials (2020)
  8. Drolia, M.; Mohamed, M. S.; Laghrouche, O.; Seaid, M.; El Kacimi, A.: Explicit time integration with lumped mass matrix for enriched finite elements solution of time domain wave problems (2020)
  9. Espinosa-Almeyda, Y.; Camacho-Montes, H.; Otero, J. A.; Rodríguez-Ramos, R.; López-Realpozo, J. C.; Guinovart-Díaz, R.; Sabina, F. J.: Interphase effect on the effective magneto-electro-elastic properties for three-phase fiber-reinforced composites by a semi-analytical approach (2020)
  10. Gilewski, Wojciech; Al Sabouni-Zawadzka, Anna: Equivalent mechanical properties of tensegrity truss structures with self-stress included (2020)
  11. Goo, Seongyeol; Kook, Junghwan; Wang, Semyung: Topology optimization of vibroacoustic problems using the hybrid finite element-wave based method (2020)
  12. Kravetc, Tatiana; Dalmo, Rune: Finite element application of ERBS extraction (2020)
  13. Lila, Eardi; Arridge, Simon; Aston, John A. D.: Representation and reconstruction of covariance operators in linear inverse problems (2020)
  14. López, Jorge; Anitescu, Cosmin; Rabczuk, Timon: CAD-compatible structural shape optimization with a movable Bézier tetrahedral mesh (2020)
  15. Meister, Felix; Passerini, Tiziano; Mihalef, Viorel; Tuysuzoglu, Ahmet; Maier, Andreas; Mansi, Tommaso: Deep learning acceleration of total Lagrangian explicit dynamics for soft tissue mechanics (2020)
  16. Nairn, John A.; Hammerquist, Chad C.; Smith, Grant D.: New material point method contact algorithms for improved accuracy, large-deformation problems, and proper null-space filtering (2020)
  17. Nastos, C. V.; Saravanos, D. A.: A finite wavelet domain method for wave propagation analysis in thick laminated composite and sandwich plates (2020)
  18. Ni, B. Y.; Jiang, C.: Interval field model and interval finite element analysis (2020)
  19. Palma, Roberto; Pérez-Aparicio, José L.; Taylor, Robert L.: Non-linear and hysteretical finite element formulation applied to magnetostrictive materials (2020)
  20. Porcù, Roberto; Chiaramonte, Maurizio M.: Orthogonality constrained gradient reconstruction for superconvergent linear functionals (2020)

1 2 3 ... 19 20 21 next