BudgetedSVM: a toolbox for scalable SVM approximations. We present BudgetedSVM, an open-source C++ toolbox comprising highly-optimized implementations of recently proposed algorithms for scalable training of Support Vector Machine (SVM) approximators: Adaptive Multi-hyperplane Machines, Low-rank Linearization SVM, and Budgeted Stochastic Gradient Descent. BudgetedSVM trains models with accuracy comparable to LibSVM in time comparable to LibLinear, solving non-linear problems with millions of high-dimensional examples within minutes on a regular computer. We provide command-line and Matlab interfaces to BudgetedSVM, an efficient API for handling large-scale, high-dimensional data sets, as well as detailed documentation to help developers use and further extend the toolbox.

References in zbMATH (referenced in 1 article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Djuric, Nemanja; Lan, Liang; Vucetic, Slobodan; Wang, Zhuang: BudgetedSVM: a toolbox for scalable SVM approximations (2013)