Computing sparse Hessians with automatic differentiation. A new approach for computing a sparsity pattern for a Hessian is presented: nonlinearity information is propagated through the function evaluation yielding the nonzero structure. A complexity analysis of the proposed algorithm is given. Once the sparsity pattern is available, coloring algorithms can be applied to compute a seed matrix. To evaluate the product of the Hessian and the seed matrix, a vector version for evaluating second order adjoints is analysed. New drivers of ADOL-C are provided implementing the presented algorithms. Runtime analyses are given for some problems of the CUTE collection.

This software is also peer reviewed by journal TOMS.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element