References in zbMATH (referenced in 94 articles , 1 standard article )

Showing results 1 to 20 of 94.
Sorted by year (citations)

1 2 3 4 5 next

  1. Costa Mota Paraíba, Carolina; Ribeiro Diniz, Carlos Alberto: Randomly truncated nonlinear mixed-effects models (2016)
  2. Faraway, Julian J.: Extending the linear model with R. Generalized linear, mixed effects and nonparametric regression models. (2016)
  3. Furlan, Sarah; Agnoli, Franca; Reyna, Valerie F.: Intuition and analytic processes in probabilistic reasoning: the role of time pressure (2016)
  4. Heinzl, Felix; Tutz, Gerhard: Additive mixed models with approximate Dirichlet process mixtures: the EM approach (2016)
  5. Katahira, Kentaro: How hierarchical models improve point estimates of model parameters at the individual level (2016)
  6. Kogan, Clark; Kalachev, Leonid; Van Dongen, Hans P.A.: Prediction accuracy in multivariate repeated-measures Bayesian forecasting models with examples drawn from research on sleep and circadian rhythms (2016)
  7. Kohli, Nidhi; Harring, Jeffrey R.; Zopluoglu, Cengiz: A finite mixture of nonlinear random coefficient models for continuous repeated measures data (2016)
  8. Wang, Wei: Identifiability of covariance parameters in linear mixed effects models (2016)
  9. Kreutz, Clemens; Raue, Andreas; Timmer, Jens: Statistics for model calibration (2015)
  10. Sengupta, Dishari; Choudhary, Pankaj K.; Cassey, Phillip: Modeling and analysis of method comparison data with skewness and heavy tails (2015)
  11. Sinha, Sanjoy K.; Sattar, Abdus: Inference in semi-parametric spline mixed models for longitudinal data (2015)
  12. West, Brady T.; Welch, Kathleen B.; Gałecki, Andrzej T.: Linear mixed models. A practical guide using statistical software. With contributions from Brenda W. Gillespie (2015)
  13. Żądło, Tomasz: On longitudinal moving average model for prediction of subpopulation total (2015)
  14. Arribas-Gil, Ana; Bertin, Karine; Meza, Cristian; Rivoirard, Vincent: Lasso-type estimators for semiparametric nonlinear mixed-effects models estimation (2014)
  15. Choudhary, Pankaj K.; Sengupta, Dishari; Cassey, Phillip: A general skew-$t$ mixed model that allows different degrees of freedom for random effects and error distributions (2014)
  16. Delattre, Maud; Lavielle, Marc; Poursat, Marie-Anne: A note on BIC in mixed-effects models (2014)
  17. Groll, Andreas; Tutz, Gerhard: Variable selection for generalized linear mixed models by $L_1$-penalized estimation (2014)
  18. Hofner, Benjamin; Mayr, Andreas; Robinzonov, Nikolay; Schmid, Matthias: Model-based boosting in R: a hands-on tutorial using the R package mboost (2014)
  19. Ng, Chi Tim; Joe, Harry: Model comparison with composite likelihood information criteria (2014)
  20. Wang, L.; Cao, J.; Ramsay, J.O.; Burger, D.M.; Laporte, C.J.L.; Rockstroh, J.K.: Estimating mixed-effects differential equation models (2014)

1 2 3 4 5 next