VarInt: variational integrator design with maple. Geometric numerical integration refers to a class of numerical integration algorithms that preserve the differential geometric structure that defines the evolution of dynamical systems. For simulations over relatively short time spans, as compared to the intrinsic time scales, standard (non-geometric) integrators are often advantageous, as they include adaptive and multistep methods, which can be both accurate and fast. Extended computations require a different, geometric approach, as non-geometric methods tend to generate or dissipate energy artificially due to the fact that they do not respect the fundamental geometry of the phase flow, which means that at some point the errors dominate. ...

This software is also peer reviewed by journal TOMS.

References in zbMATH (referenced in 1 article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Hellström, Christian: VarInt: variational integrator design with Maple (2010) ioport