quadgk: Numerically evaluate integral, adaptive Gauss-Kronrod quadrature, q = quadgk(fun,a,b) attempts to approximate the integral of a scalar-valued function fun from a to b using high-order global adaptive quadrature and default error tolerances. The function y = fun(x) should accept a vector argument x and return a vector result y, where y is the integrand evaluated at each element of x. fun must be a function handle. Limits a and b can be -Inf or Inf. If both are finite, they can be complex. If at least one is complex, the integral is approximated over a straight line path from a to b in the complex plane.

References in zbMATH (referenced in 34 articles , 1 standard article )

Showing results 1 to 20 of 34.
Sorted by year (citations)

1 2 next

  1. Jin, Junyang; Yuan, Ye; Gonçalves, Jorge: High precision variational Bayesian inference of sparse linear networks (2020)
  2. Monteghetti, Florian; Matignon, Denis; Piot, Estelle: Time-local discretization of fractional and related diffusive operators using Gaussian quadrature with applications (2020)
  3. Song, Zhu; Xiang, Yanqiu; Lin, Cheng; Zhou, Feng: A two-stage analytical extension for porothermoelastic model under axisymmetric loadings (2020)
  4. Ahues, Mario; d’Almeida, Filomena D.; Fernandes, Rosário; Vasconcelos, Paulo B.: Singularity subtraction for nonlinear weakly singular integral equations of the second kind (2019)
  5. Li, Min; Huang, Chengming; Ming, Wanyuan: Barycentric rational collocation methods for Volterra integral equations with weakly singular kernels (2019)
  6. Postnov, Sergeĭ S.: Optimal control problems for certain linear fractional-order systems given by equations with Hilfer derivative (2019)
  7. Trong, Dang Duc; Hai, Dinh Nguyen Duy; Nguyen, Dang Minh: Optimal regularization for an unknown source of space-fractional diffusion equation (2019)
  8. Tsedendorj, G.; Isshiki, H.: Numerical study of unsteady diffusion in circle (2019)
  9. Bernoff, Andrew J.; Lindsay, Alan E.: Numerical approximation of diffusive capture rates by planar and spherical surfaces with absorbing pores (2018)
  10. de Andrade, Bernardo B.; Souza, Geraldo S.: Likelihood computation in the normal-gamma stochastic frontier model (2018)
  11. Goude, Anders; Engblom, Stefan: A general high order two-dimensional panel method (2018)
  12. Kollmannsberger, Stefan; Özcan, A.; Carraturo, Massimo; Zander, N.; Rank, E.: A hierarchical computational model for moving thermal loads and phase changes with applications to selective laser melting (2018)
  13. Kostas, K. V.; Fyrillas, M. M.; Politis, C. G.; Ginnis, A. I.; Kaklis, P. D.: Shape optimization of conductive-media interfaces using an IGA-BEM solver (2018)
  14. Lee, Kookjin; Carlberg, Kevin; Elman, Howard C.: Stochastic least-squares Petrov-Galerkin method for parameterized linear systems (2018)
  15. Meyer, Daniel W.: Density estimation with distribution element trees (2018)
  16. Simmons, Alex; Yang, Qianqian; Moroney, Timothy: A finite volume method for two-sided fractional diffusion equations on non-uniform meshes (2017)
  17. Babuška, Ivo; Sawlan, Zaid; Scavino, Marco; Szabó, Barna; Tempone, Raúl: Bayesian inference and model comparison for metallic fatigue data (2016)
  18. Grammont, Laurence; Vasconcelos, Paulo B.; Ahues, Mario: A modified iterated projection method adapted to a nonlinear integral equation (2016)
  19. Keller, Paweł; Wróbel, Iwona: Computing Cauchy principal value integrals using a standard adaptive quadrature (2016)
  20. Kubyshkin, V. A.; Postnov, S. S.: Optimal control problem investigation for linear time-invariant systems of fractional order with lumped parameters described by equations with Riemann-Liouville derivative (2016)

1 2 next