quadgk: Numerically evaluate integral, adaptive Gauss-Kronrod quadrature, q = quadgk(fun,a,b) attempts to approximate the integral of a scalar-valued function fun from a to b using high-order global adaptive quadrature and default error tolerances. The function y = fun(x) should accept a vector argument x and return a vector result y, where y is the integrand evaluated at each element of x. fun must be a function handle. Limits a and b can be -Inf or Inf. If both are finite, they can be complex. If at least one is complex, the integral is approximated over a straight line path from a to b in the complex plane.

References in zbMATH (referenced in 22 articles , 1 standard article )

Showing results 1 to 20 of 22.
Sorted by year (citations)

1 2 next

  1. Bernoff, Andrew J.; Lindsay, Alan E.: Numerical approximation of diffusive capture rates by planar and spherical surfaces with absorbing pores (2018)
  2. de Andrade, Bernardo B.; Souza, Geraldo S.: Likelihood computation in the normal-gamma stochastic frontier model (2018)
  3. Kollmannsberger, Stefan; Özcan, A.; Carraturo, Massimo; Zander, N.; Rank, E.: A hierarchical computational model for moving thermal loads and phase changes with applications to selective laser melting (2018)
  4. Lee, Kookjin; Carlberg, Kevin; Elman, Howard C.: Stochastic least-squares Petrov-Galerkin method for parameterized linear systems (2018)
  5. Meyer, Daniel W.: Density estimation with distribution element trees (2018)
  6. Simmons, Alex; Yang, Qianqian; Moroney, Timothy: A finite volume method for two-sided fractional diffusion equations on non-uniform meshes (2017)
  7. Grammont, Laurence; Vasconcelos, Paulo B.; Ahues, Mario: A modified iterated projection method adapted to a nonlinear integral equation (2016)
  8. Keller, Paweł; Wróbel, Iwona: Computing Cauchy principal value integrals using a standard adaptive quadrature (2016)
  9. Kubyshkin, V. A.; Postnov, S. S.: Optimal control problem investigation for linear time-invariant systems of fractional order with lumped parameters described by equations with Riemann-Liouville derivative (2016)
  10. Liu, Jun; Huang, Yu; Sun, Haiwei; Xiao, Mingqing: Numerical methods for weak solution of wave equation with van der Pol type nonlinear boundary conditions (2016)
  11. Brummelhuis, Raymond; Chan, Ron T. L.: A radial basis function scheme for option pricing in exponential Lévy models (2014)
  12. Chan, Ron Tat Lung; Hubbert, Simon: Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme (2014)
  13. Pang, Hong-Kui; Sun, Hai-Wei: Fast exponential time integration for pricing options in stochastic volatility jump diffusion models (2014)
  14. Ratnanather, J. Tilak; Kim, Jung H.; Zhang, Sirong; Davis, Anthony M. J.; Lucas, Stephen K.: Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions (2014)
  15. D’Elia, Marta; Gunzburger, Max: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator (2013)
  16. Pang, Guofei; Chen, Wen; Sze, K. Y.: Gauss-Jacobi-type quadrature rules for fractional directional integrals (2013)
  17. Schröter, Alexander; Heider, Pascal: An analytical formula for pricing (m)-th to default swaps (2013)
  18. Shampine, L. F.: Efficient Filon method for oscillatory integrals (2013)
  19. Narisetti, Raj K.; Ruzzene, Massimo; Leamy, Michael J.: Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach (2012)
  20. Albanesi, Alejandro E.; Fachinotti, Víctor D.; Cardona, Alberto: Inverse finite element method for large-displacement beams (2010)

1 2 next