RON

RON , A Maple package to study Ron Graham’s problem on Schur triples. It accompanies Aaron Robertson and Doron Zeilberger’s paper: ” A 2-coloring of [1,N] can have (1/22)N 2 +O(N) monochromatic Schur triples, but not less.”


References in zbMATH (referenced in 14 articles , 1 standard article )

Showing results 1 to 14 of 14.
Sorted by year (citations)

  1. Thanatipanonda, Thotsaporn; Wong, Elaine: On the minimum number of monochromatic generalized Schur triples (2017)
  2. Yao, Olivia X.M.; Xia, Ernest X.W.: Two formulas of 2-color off-diagonal Rado numbers (2015)
  3. Montejano, Amanda; Serra, Oriol: Counting patterns in colored orthogonal arrays (2014)
  4. Lane-Harvard, Liz; Schaal, Daniel: Disjunctive Rado numbers for $ax_1+x_2=x_3$ and $bx_1+x_2=x_3$ (2013)
  5. Li, Hongze; Pan, Hao: A Schur-type addition theorem for primes (2012)
  6. Lu, Linyuan; Peng, Xing: Monochromatic 4-term arithmetic progressions in 2-colorings of $\Bbb Z_n$ (2012)
  7. Kosek, Wojciech; Robertson, Aaron; Sabo, Dusty; Schaal, Daniel: Multiplicity of monochromatic solutions to $x+y<z$ (2010)
  8. Parrilo, Pablo A.; Robertson, Aaron; Saracino, Dan: On the asymptotic minimum number of monochromatic 3-term arithmetic progressions (2008)
  9. Cameron, Peter; Cilleruelo, Javier; Serra, Oriol: On monochromatic solutions of equations in groups (2007)
  10. Serra, Oriol: Some Ramsey and anti-Ramsey results in finite groups (2007)
  11. Hopkins, Brian; Schaal, Daniel: On Rado numbers for $\Sigma^m-1_i=1 a_ix_i= x_m$ (2005)
  12. Johnson, Brenda; Schaal, Daniel: Disjunctive Rado numbers (2005)
  13. Datskovsky, Boris A.: On the number of monochromatic Schur triples. (2003)
  14. Robertson, Aaron; Zeilberger, Doron: A 2-coloring of $[1, N]$ can have $(1/22) N^2+O(N)$ monochromatic Schur triples, but not less (1998)