A numerical code for the calculation of relativistic electron cyclotron damping with an arbitrary distribution function at an arbitrary harmonic. The relativistic expressions for the anti-Hermitian parts of the relativistic dielectric tensor elements can be expressed as a single integral over the parallel momentum variable, allowing an arbitrary electron distribution function. A computer program has been written for the calculation of this single integral. The numerical results are tested for a relativistic Maxwellian distribution function and agree with analytical expressions for this case. The numerical code is therefore an essential element in a more general validation, evaluation and demonstration of powerful analytical results presented. The computer program is then applied to the calculation of relativistic electron cyclotron harmonic damping at any arbitrary harmonic, for any distorted electron distribution function, distorted for example by an electric field or by RF power sources, as for instance by both electron cyclotron and lower-hybrid waves, as calculated from a relativistic Fokker-Planck code. For generality, we also include the case of relativistic Landau damping, also used to check the code.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element