UNTOU3

Representations of U(3) in U(N). Nature of problem: U(N) -> U(3) plethysm, that is, finding the complete set of irreducible representations (irreps) of U(3) in specific irreps of U(N) where N=(n+1) (n+2)/2 for nonnegative integer n values. Solution method: Solutions are obtained by applying a simple difference algorithm to the U(3) weight distribution function. The latter is generated in three steps: 1) by indentifying the N levels of U(N) as the distinguishable arrangements of n oscillator quanta in three cartesian directions, 2) by distributing the total number of qaunta (n * m if m is the number of valence particles) among these levels subject to restrictions (betweeness conditions) of the Gelfand scheme for labeling basis states of U(N), and 3) by summing over all the N levels to determine the final distribution of quanta in the three cartesian directions.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element


References in zbMATH (referenced in 1 article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Draayer, J.P.; Leschber, S.C.; Park, S.C.; Lopez, R.: Representations of $U(3)$ in $U(N)$ (1989)