Orthogonal polynomials. Computation and approximation. Orthogonal polynomials are a widely used class of mathematical functions that are helpful in the solution of many important technical problems. This book provides, for the first time, a systematic development of computational techniques, including a suite of computer programs in Matlab downloadable from the Internet, to generate orthogonal polynomials of a great variety: OPQ: A MATLAB SUITE OF PROGRAMS FOR GENERATING ORTHOGONAL POLYNOMIALS AND RELATED QUADRATURE RULES.

References in zbMATH (referenced in 335 articles , 1 standard article )

Showing results 1 to 20 of 335.
Sorted by year (citations)

1 2 3 ... 15 16 17 next

  1. Im, Jongho; Morikawa, Kosuke; Ha, Hyung-Tae: A least squares-type density estimator using a polynomial function (2020)
  2. Iserles, Arieh; Webb, Marcus: A family of orthogonal rational functions and other orthogonal systems with a skew-Hermitian differentiation matrix (2020)
  3. Wang, Xiaolong; Jiang, Yaolin: Time domain model reduction of time-delay systems via orthogonal polynomial expansions (2020)
  4. Álvarez-Vizoso, J.; Arn, Robert; Kirby, Michael; Peterson, Chris; Draper, Bruce: Geometry of curves in (\mathbbR^n) from the local singular value decomposition (2019)
  5. Calabrò, F.; Bravo, D.; Carissimo, C.; Di Fazio, E.; Di Pasquale, A.; Eldray, A. A. M. O.; Fabrizi, C.; Gerges, J. G. S.; Palazzo, S.; Wassef, J. F. F. T.: Null rules for the detection of lower regularity of functions (2019)
  6. Djukić, Dušan Lj.; Reichel, Lothar; Spalević, Miodrag M.; Tomanović, Jelena D.: Internality of generalized averaged Gaussian quadrature rules and truncated variants for modified Chebyshev measures of the second kind (2019)
  7. Durastante, Fabio: Efficient solution of time-fractional differential equations with a new adaptive multi-term discretization of the generalized Caputo-Dzherbashyan derivative (2019)
  8. Erfani, S.; Babolian, E.; Javadi, S.; Shamsi, M.: Stable evaluations of fractional derivative of the Müntz-Legendre polynomials and application to fractional differential equations (2019)
  9. Fermo, Luisa; Russo, Maria Grazia; Serafini, Giada: Numerical methods for Cauchy bisingular integral equations of the first kind on the square (2019)
  10. Foroozandeh, Z.; Shamsi, M.; de Pinho, M. d. R.: A mixed-binary non-linear programming approach for the numerical solution of a family of singular optimal control problems (2019)
  11. Huybrechs, Daan; Kuijlaars, Arno; Lejon, Nele: A numerical method for oscillatory integrals with coalescing saddle points (2019)
  12. Karvonen, Toni; Särkkä, Simo: Gaussian kernel quadrature at scaled Gauss-Hermite nodes (2019)
  13. Kuian, Mykhailo; Reichel, Lothar; Shiyanovskii, Sergij: Optimally conditioned Vandermonde-like matrices (2019)
  14. Mezo, István; Ramírez, José L.; Wang, Chen-Ying: On generalized derangements and some orthogonal polynomials (2019)
  15. Milovanović, Gradimir V.: A note on extraction of orthogonal polynomials from generating function for reciprocal of odd numbers (2019)
  16. Olver, Sheehan; Townsend, Alex; Vasil, Geoffrey: A sparse spectral method on triangles (2019)
  17. Olver, Sheehan; Xu, Yuan: Orthogonal structure on a wedge and on the boundary of a square (2019)
  18. Patrício, Fernanda Simões; Patrício, Miguel; Ramos, Higinio: Extrapolating for attaining high precision solutions for fractional partial differential equations (2019)
  19. Pozza, S.; Strakoš, Z.: Algebraic description of the finite Stieltjes moment problem (2019)
  20. Rajković, Predrag M.; Marinković, Sladjana D.; Petković, Marko D.: A class of orthogonal polynomials related to the generalized Laguerre weight with two parameters (2019)

1 2 3 ... 15 16 17 next