Nektar++

Nektar++: An efficient h to p finite element framework. Nektar++ is a tensor product based finite element package designed to allow one to construct efficient classical low polynomial order h-type solvers (where h is the size of the finite element) as well as higher p-order piecewise polynomial order solvers. The framework currently has the following capabilities: Representation of one, two and three-dimensional fields as a collection of piecewise continuous or discontinuous polynomial domains. Segment, plane and volume domains are permissible, as well as domains representing curves and surfaces (dimensionally-embedded domains). Hybrid shaped elements, i.e triangles and quadrilaterals or tetrahedra, prisms and hexahedra. Both hierarchical and nodal expansion bases. Continuous or discontinuous Galerkin operators. Cross platform support for Linux, Mac OS X and Windows.


References in zbMATH (referenced in 20 articles , 1 standard article )

Showing results 1 to 20 of 20.
Sorted by year (citations)

  1. Docampo-Sánchez, Julia; Ryan, Jennifer K.; Mirzargar, Mahsa; Kirby, Robert M.: Multi-dimensional filtering: reducing the dimension through rotation (2017)
  2. Jomo, John N.; Zander, Nils; Elhaddad, Mohamed; Özcan, Ali; Kollmannsberger, Stefan; Mundani, Ralf-Peter; Rank, Ernst: Parallelization of the multi-level $hp$-adaptive finite cell method (2017)
  3. Santiago Badia, Alberto F. Martin, Javier Principe: FEMPAR: An object-oriented parallel finite element framework (2017) arXiv
  4. Bao, Y.; Palacios, R.; Graham, M.; Sherwin, S.: Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders (2016)
  5. Homolya, M.; Ham, D.A.: A parallel edge orientation algorithm for quadrilateral meshes (2016)
  6. McRae, A.T.T.; Bercea, G.-T.; Mitchell, L.; Ham, D.A.; Cotter, C.J.: Automated generation and symbolic manipulation of tensor product finite elements (2016)
  7. Moradi, H.V.; Floryan, J.M.: A method for analysis of stability of flows in ribbed annuli (2016)
  8. Moura, R.C.; Sherwin, S.J.; Peiró, J.: Eigensolution analysis of spectral/$hp$ continuous Galerkin approximations to advection-diffusion problems: insights into spectral vanishing viscosity (2016)
  9. Spiteri, Raymond J.; Torabi Ziaratgahi, Saeed: Operator splitting for the bidomain model revisited (2016)
  10. Yakovlev, Sergey; Moxey, David; Kirby, Robert M.; Sherwin, Spencer J.: To CG or to HDG: a comparative study in 3D (2016)
  11. Cantwell, C.D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.-E.; Ekelschot, D.; Jordi, B.; Xu, H.; Mohamied, Y.; Eskilsson, C.; Nelson, B.; Vos, P.; Biotto, C.; Kirby, R.M.; Sherwin, S.J.: Nektar++: an open-source spectral/$hp$ element framework (2015)
  12. Mengaldo, G.; De Grazia, D.; Moxey, D.; Vincent, P.E.; Sherwin, S.J.: Dealiasing techniques for high-order spectral element methods on regular and irregular grids (2015)
  13. Chun, Sehun: Method of moving frames to solve (an)isotropic diffusion equations on curved surfaces (2014)
  14. King, James; Yakovlev, Sergey; Fu, Zhisong; Kirby, Robert M.; Sherwin, Spencer J.: Exploiting batch processing on streaming architectures to solve 2D elliptic finite element problems: a hybridized discontinuous Galerkin (HDG) case study (2014)
  15. Chun, Sehun: Method of moving frames to solve conservation laws on curved surfaces (2012)
  16. Medjroubi, W.; Stoevesandt, B.; Carmo, B.; Peinke, J.: High-order numerical simulations of the flow around a heaving airfoil (2011)
  17. Eskilsson, Claes; El-Khamra, Yaakoub; Rideout, David; Allen, Gabrielle; Chen, Q.Jim; Tyagi, Mayank: A parallel high-order discontinuous Galerkin shallow water model (2009)
  18. Luo, Xian; Maxey, Martin R.; Karniadakis, George Em: Smoothed profile method for particulate flows: Error analysis and simulations (2009)
  19. Grinberg, Leopold; Karniadakis, George Em: A scalable domain decomposition method for ultra-parallel arterial flow simulations (2008)
  20. Dong, Suchuan; Liu, Dong; Maxey, Martin R.; Karniadakis, George Em: Spectral distributed Lagrange multiplier method: algorithm and benchmark tests (2004)


Further publications can be found at: https://www.nektar.info/community/publications/