PROC CATMOD

The CATMOD procedure performs categorical data modeling of data that can be represented by a contingency table. PROC CATMOD fits linear models to functions of response frequencies, and it can be used for linear modeling, log-linear modeling, logistic regression, and repeated measurement analysis. PROC CATMOD uses the following estimation methods: weighted least squares (WLS) estimation of parameters for a wide range of general linear models; maximum likelihood (ML) estimation of parameters for log-linear models and the analysis of generalized logits. The CATMOD procedure provides a wide variety of categorical data analyses, many of which are generalizations of continuous data analysis methods. For example, analysis of variance, in the traditional sense, refers to the analysis of means and the partitioning of variation among the means into various sources. Here, the term analysis of variance is used in a generalized sense to denote the analysis of response functions and the partitioning of variation among those functions into various sources. The response functions might be mean scores if the dependent variables are ordinally scaled. But they can also be marginal probabilities, cumulative logits, or other functions that incorporate the essential information from the dependent variables.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element