TateOnProducts

TateOnProducts, package for Macaulay2: Tate resolutions for products of projective spaces. We describe the Tate resolution of a coherent sheaf or complex of coherent sheaves on a product of projective spaces. Such a resolution makes explicit all the cohomology of all twists of the sheaf, including, for example, the multigraded module of twisted global sections, and also the Beilinson monads of all twists. Although the Tate resolution is highly infinite, any finite number of components can be computed efficiently, starting either from a Beilinson monad or from a multigraded module.

References in zbMATH (referenced in 1 article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Eisenbud, David; Erman, Daniel; Schreyer, Frank-Olaf: Tate resolutions for products of projective spaces (2015)