The orbifolder: A tool to study the low-energy effective theory of heterotic orbifolds. The orbifolder is a program developed in C++ that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum configurations.

References in zbMATH (referenced in 13 articles )

Showing results 1 to 13 of 13.
Sorted by year (citations)

  1. Berasaluce-González, Mikel; Honecker, Gabriele; Seifert, Alexander: Massless spectra and gauge couplings at one-loop on non-factorisable toroidal orientifolds (2018)
  2. Kappl, Rolf; Nilles, Hans Peter; Schmitz, Matthias: $R$ symmetries and a heterotic MSSM (2015)
  3. Nibbelink, Stefan Groot; Loukas, Orestis; Ruehle, Fabian: (MS)SM-like models on smooth Calabi-Yau manifolds from all three heterotic string theories (2015)
  4. Blaszczyk, Michael; Nibbelink, Stefan Groot; Loukas, Orestis; Ramos-Sánchez, Saúl: Non-supersymmetric heterotic model building (2014)
  5. Bizet, Nana G.Cabo; Kobayashi, Tatsuo; Peña, Damián K.Mayorga; Parameswaran, Susha L.; Schmitz, Matthias; Zavala, Ivonne: R-charge conservation and more in factorizable and non-factorizable orbifolds (2013)
  6. Bizet, Nana Geraldine Cabo; Nilles, Hans Peter: Heterotic mini-landscape in blow-up (2013)
  7. Fischer, Maximilian; Ramos-Sánchez, Saúl; Vaudrevange, Patrick K.S.: Heterotic non-abelian orbifolds (2013)
  8. Fischer, Maximilian; Ratz, Michael; Torrado, Jesús; Vaudrevange, Patrick K.S.: Classification of symmetric toroidal orbifolds (2013)
  9. Nibbelink, Stefan Groot; Loukas, Orestis: MSSM-like models on $ \mathbbZ_8 $ toroidal orbifolds (2013)
  10. Nibbelink, Stefan Groot; Vaudrevange, Patrick K.S.: Schoen manifold with line bundles as resolved magnetized orbifolds (2013)
  11. Nilles, Hans Peter; Ramos-Sánchez, Saúl; Ratz, Michael; Vaudrevange, Patrick K.S.: A note on discrete $R$ symmetries in $\mathbb Z_6$-II orbifolds with Wilson lines (2013)
  12. Nilles, H.P.; Ratz, M.; Vaudrevange, P.K.S.: Origin of family symmetries (2013)
  13. Goodsell, Mark; Ramos-Sánchez, Saúl; Ringwald, Andreas: Kinetic mixing of $\operatornameU(1)$s in heterotic orbifolds (2012)