Algorithm 679

Algorithm 679: A set of Level 3 Basic Linear Algebra Subprograms. This paper describes a model implementation and test software for the Level 2 Basic Linear Algebra Subprograms (Level 2 BLAS). Level 2 BLAS are targeted at matrix-vector operations with the aim of providing more efficient but portable, implementations of algorithms on high-performance computers. The model implementation provides a portable set of FORTRAN 77 Level 2 BLAS for machines where specialized implementations do not exists or are not required. The test software aims to verify that specialized implementations meet the specification of Level 2 BLAS that implementations are correctly installed.

This software is also peer reviewed by journal TOMS.

References in zbMATH (referenced in 52 articles )

Showing results 1 to 20 of 52.
Sorted by year (citations)

1 2 3 next

  1. Hager, William W.; Zhang, Hongchao: Projection onto a polyhedron that exploits sparsity (2016)
  2. Gustavson, Fred G.; Waśniewski, Jerzy; Dongarra, Jack J.; Herrero, José R.; Langou, Julien: Level-3 Cholesky factorization routines improve performance of many Cholesky algorithms (2013)
  3. Utsuno, Yutaka; Shimizu, Noritaka; Otsuka, Takaharu; Abe, Takashi: Efficient computation of Hamiltonian matrix elements between non-orthogonal Slater determinants (2013)
  4. Kacem, S.; Eichwald, O.; Ducasse, O.; Renon, N.; Yousfi, M.; Charrada, K.: Full multi grid method for electric field computation in point-to-plane streamer discharge in air at atmospheric pressure (2012)
  5. D’Alberto, Paolo; Bodrato, Marco; Nicolau, Alexandru: Exploiting parallelism in matrix-computation kernels for symmetric multiprocessor systems: matrix-multiplication and matrix-addition algorithm optimizations by software pipelining and threads allocation (2011)
  6. Drmač, Zlatko: A global convergence proof for cyclic Jacobi methods with block rotations (2010)
  7. Gustavson, Fred G.; Waśniewski, Jerzy; Dongarra, Jack J.; Langou, Julien: Rectangular full packed format for Cholesky’s algorithm: factorization, solution, and inversion (2010)
  8. Baboulin, Marc; Buttari, Alfredo; Dongarra, Jack; Kurzak, Jakub; Langou, Julie; Langou, Julien; Luszczek, Piotr; Tomov, Stanimire: Accelerating scientific computations with mixed precision algorithms (2009)
  9. D’Alberto, Paolo; Nicolau, Alexandru: Adaptive Winograd’s matrix multiplications (2009)
  10. Hurault, Aurélie; Daydé, Michel; Pantel, Marc: Advanced service trading for scientific computing over the grid (2009) ioport
  11. Saini, Subhash; Ciotti, Robert; Gunney, Brian T.N.; Spelce, Thomas E.; Koniges, Alice; Dossa, Don; Adamidis, Panagiotis; Rabenseifner, Rolf; Tiyyagura, Sunil R.; Mueller, Matthias: Performance evaluation of supercomputers using HPCC and IMB benchmarks (2008)
  12. Zotos, Kostas: Computer algebra systems - new strategies and techniques (2008)
  13. Benner, Peter; Sima, Vasile; Slowik, Martin: Evaluation of the linear matrix equation solvers in SLICOT (2007)
  14. Bosner, Nela; Barlow, Jesse L.: Block and parallel versions of one-sided bidiagonalization (2007)
  15. Dennis, J.M.; Jessup, E.R.: Applying automated memory analysis to improve iterative algorithms (2007)
  16. Baker, A.H.; Dennis, J.M.; Jessup, E.R.: On improving linear solver performance: a block variant of GMRES (2006)
  17. Chandrasekaran, S.; Gu, M.; Pals, T.: A fast ULV decomposition solver for hierarchically semiseparable representations (2006)
  18. Parpia, F.A.; Fischer, C.Froese; Grant, I.P.: GRASP92: a package for large-scale relativistic atomic structure calculations (2006)
  19. Chandrasekaran, S.; Dewilde, P.; Gu, M.; Pals, T.; Sun, X.; van der Veen, A.-J.; White, D.: Some fast algorithms for sequentially semiseparable representations (2005)
  20. Ogita, Takeshi; Oishi, Shin’ichi: Fast inclusion of interval matrix multiplication (2005)

1 2 3 next