Algorithm 679

Algorithm 679: A set of Level 3 Basic Linear Algebra Subprograms. This paper describes a model implementation and test software for the Level 2 Basic Linear Algebra Subprograms (Level 2 BLAS). Level 2 BLAS are targeted at matrix-vector operations with the aim of providing more efficient but portable, implementations of algorithms on high-performance computers. The model implementation provides a portable set of FORTRAN 77 Level 2 BLAS for machines where specialized implementations do not exists or are not required. The test software aims to verify that specialized implementations meet the specification of Level 2 BLAS that implementations are correctly installed.

This software is also peer reviewed by journal TOMS.

References in zbMATH (referenced in 60 articles )

Showing results 1 to 20 of 60.
Sorted by year (citations)

1 2 3 next

  1. Springer, Paul; Bientinesi, Paolo: Design of a high-performance GEMM-like tensor-tensor multiplication (2018)
  2. Elmar Peise; Paolo Bientinesi: Algorithm 979: Recursive Algorithms for Dense Linear Algebra - The ReLAPACK Collection (2017) not zbMATH
  3. Ji, Hao; Li, Yaohang: Block conjugate gradient algorithms for least squares problems (2017)
  4. Peise, Elmar; Bientinesi, Paolo: Algorithm 979: Recursive algorithms for dense linear algebra -- the ReLAPACK collection (2017)
  5. Springer, Paul; Hammond, Jeff R.; Bientinesi, Paolo: TTC: a high-performance compiler for tensor transpositions (2017)
  6. Hager, William W.; Zhang, Hongchao: Projection onto a polyhedron that exploits sparsity (2016)
  7. Veremieiev, S.; Thompson, H. M.; Gaskell, P. H.: Free-surface film flow over topography: full three-dimensional finite element solutions (2015)
  8. Ballard, G.; Carson, E.; Demmel, J.; Hoemmen, M.; Knight, N.; Schwartz, O.: Communication lower bounds and optimal algorithms for numerical linear algebra (2014)
  9. Gustavson, Fred G.; Waśniewski, Jerzy; Dongarra, Jack J.; Herrero, José R.; Langou, Julien: Level-3 Cholesky factorization routines improve performance of many Cholesky algorithms (2013)
  10. Utsuno, Yutaka; Shimizu, Noritaka; Otsuka, Takaharu; Abe, Takashi: Efficient computation of Hamiltonian matrix elements between non-orthogonal Slater determinants (2013)
  11. Kacem, S.; Eichwald, O.; Ducasse, O.; Renon, N.; Yousfi, M.; Charrada, K.: Full multi grid method for electric field computation in point-to-plane streamer discharge in air at atmospheric pressure (2012)
  12. D’Alberto, Paolo; Bodrato, Marco; Nicolau, Alexandru: Exploiting parallelism in matrix-computation kernels for symmetric multiprocessor systems: matrix-multiplication and matrix-addition algorithm optimizations by software pipelining and threads allocation (2011)
  13. Drmač, Zlatko: A global convergence proof for cyclic Jacobi methods with block rotations (2010)
  14. Gustavson, Fred G.; Waśniewski, Jerzy; Dongarra, Jack J.; Langou, Julien: Rectangular full packed format for Cholesky’s algorithm: factorization, solution, and inversion (2010)
  15. Baboulin, Marc; Buttari, Alfredo; Dongarra, Jack; Kurzak, Jakub; Langou, Julie; Langou, Julien; Luszczek, Piotr; Tomov, Stanimire: Accelerating scientific computations with mixed precision algorithms (2009)
  16. D’Alberto, Paolo; Nicolau, Alexandru: Adaptive Winograd’s matrix multiplications (2009)
  17. Hurault, Aurélie; Daydé, Michel; Pantel, Marc: Advanced service trading for scientific computing over the grid (2009) ioport
  18. Saini, Subhash; Ciotti, Robert; Gunney, Brian T. N.; Spelce, Thomas E.; Koniges, Alice; Dossa, Don; Adamidis, Panagiotis; Rabenseifner, Rolf; Tiyyagura, Sunil R.; Mueller, Matthias: Performance evaluation of supercomputers using HPCC and IMB benchmarks (2008)
  19. Zotos, Kostas: Computer algebra systems - new strategies and techniques (2008)
  20. Beebe, Nelson H. F.; Ball, James S.: Algorithm 867: QUADLOG -- a package of routines for generating Gauss-related quadrature for two classes of logarithmic weight functions. (2007)

1 2 3 next