Mittag-Leffler

Matlab File Exchange 8738. Mittag-Leffler function: This is a MATLAB routine for evaluating the Mittag-Leffler function with two parameters (sometimes also called generalized exponential function). The Mittag-Leffler function with two parameters plays an important role and appears frequently in solutions of fractional differential equations (i.e. differential equations containing fractional derivatives).


References in zbMATH (referenced in 48 articles )

Showing results 1 to 20 of 48.
Sorted by year (citations)

1 2 3 next

  1. Iyiola, O.S.; Asante-Asamani, E.O.; Wade, B.A.: A real distinct poles rational approximation of generalized Mittag-Leffler functions and their inverses: applications to fractional calculus (2018)
  2. Pathak, Nimisha: Lyapunov-type inequality for fractional boundary value problems with Hilfer derivative (2018)
  3. Burrage, Kevin; Cardone, Angelamaria; D’Ambrosio, Raffaele; Paternoster, Beatrice: Numerical solution of time fractional diffusion systems (2017)
  4. Li, Zhuo; Liu, Lu; Dehghan, Sina; Chen, Yangquan; Xue, Dingyü: A review and evaluation of numerical tools for fractional calculus and fractional order controls (2017)
  5. Rosenfeld, Joel A.; Dixon, Warren E.: Approximating the Caputo fractional derivative through the Mittag-Leffler reproducing kernel Hilbert space and the kernelized Adams-Bashforth-Moulton method (2017)
  6. Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon: A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation (2017)
  7. Xue, Dingyü: Fractional-order control systems. Fundamentals and numerical implementations (2017)
  8. Yang, Fan; Ren, Yu-Peng; Li, Xiao-Xiao; Li, Dun-Gang: Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation (2017)
  9. Povstenko, Yuriy; Klekot, Joanna: The Dirichlet problem for the time-fractional advection-diffusion equation in a line segment (2016)
  10. Zaman, Sharif F.; Baleanu, Dumitru; Petráš, Ivo: Measurement of para-xylene diffusivity in zeolites and analyzing desorption curves using the Mittag-Leffler function (2016)
  11. Aceto, Lidia; Magherini, Cecilia; Novati, Paolo: On the construction and properties of $m$-step methods for FDEs (2015)
  12. Dybiec, Bartłomiej; Sokolov, Igor M.: Estimation of the smallest eigenvalue in fractional escape problems: semi-analytics and fits (2015)
  13. Garrappa, Roberto; Popolizio, Marina: Exponential quadrature rules for linear fractional differential equations (2015)
  14. Luchko, Yuri: Wave-diffusion dualism of the neutral-fractional processes (2015)
  15. Mainardi, Francesco; Garrappa, Roberto: On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics (2015)
  16. Tejado, Inés; Vinagre, Blas M.; Torres, Daniel; López-Bernal, Álvaro; Villalobos, Francisco J.; Testi, Luca; Podlubny, Igor: Fractional approach for estimating sap velocity in trees (2015)
  17. Wang, Jun-Gang; Wei, Ting; Zhou, Yu-Bin: Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation (2015)
  18. Xue, Dingyü; Chen, YangQuan: Modeling, analysis and design of control systems in MATLAB and Simulink (2015)
  19. Zeng, Caibin; Chen, Yang Quan: Global Padé approximations of the generalized Mittag-Leffler function and its inverse (2015)
  20. Esmaeili, Shahrokh; Milovanović, Gradimir: Nonstandard Gauss-Lobatto quadrature approximation to fractional derivatives (2014)

1 2 3 next