MATLAB ODE suite

The MATLAB ODE suite. The paper presents mathematical and software developments that are the basis for a suite of programs for the solution of initial value problems y ’ =F(t,y), with initial conditions y(t 0 )=y 0 . The solvers for stiff problems allow the more general form M(t)y ’ =f(t,y) with a nonsingular and sparse matrix M(t). The programs are developed for MATLAB, which influences the choice of methods and their implementation


References in zbMATH (referenced in 217 articles , 1 standard article )

Showing results 1 to 20 of 217.
Sorted by year (citations)

1 2 3 ... 9 10 11 next

  1. Goulet, D.: Modeling, simulating, and parameter Fitting of biochemical kinetic experiments (2016)
  2. Kulikov, G.Yu.; Kulikova, M.V.: Estimating the state in stiff continuous-time stochastic systems within extended Kalman filtering (2016)
  3. Kulyamin, Dmitry V.; Dymnikov, Valentin P.: Numerical modelling of coupled neutral atmospheric general circulation and ionosphere D region (2016)
  4. Calvo, M.; Laburta, M.P.; Montijano, J.I.; Rández, L.: Runge-Kutta projection methods with low dispersion and dissipation errors (2015)
  5. Chalishajar, Dimplekumar; Chalishajar, Heena: Trajectory controllability of second order nonlinear integro-differential system: an analytical and a numerical estimation (2015)
  6. Gaudreau, P.; Hayami, K.; Aoki, Y.; Safouhi, H.; Konagaya, A.: Improvements to the cluster Newton method for underdetermined inverse problems (2015)
  7. Johnston, Stuart T.; Simpson, Matthew J.; Baker, Ruth E.: Modelling the movement of interacting cell populations: a moment dynamics approach (2015)
  8. Khuvis, Samuel; Gobbert, Matthias K.; Peercy, Bradford E.: Time-stepping techniques to enable the simulation of bursting behavior in a physiologically realistic computational islet (2015)
  9. Kuehn, Christian: Multiple time scale dynamics (2015)
  10. Kulikov, G.Yu.; Weiner, R.: A singly diagonally implicit two-step peer triple with global error control for stiff ordinary differential equations (2015)
  11. Laburta, M.P.; Montijano, J.I.; Rández, L.; Calvo, M.: Numerical methods for non conservative perturbations of conservative problems (2015)
  12. Nance, J.; Kelley, C.T.: A sparse interpolation algorithm for dynamical simulations in computational chemistry (2015)
  13. Rossides, Tasos; Lloyd, David J.B.; Zelik, Sergey: Computing interacting multi-fronts in one dimensional real Ginzburg Landau equations (2015)
  14. Tiago, Jorge: Numerical simulations for the stabilization and estimation problem of a semilinear partial differential equation (2015)
  15. Wei, Jiamin; Yu, Yongguang; Wang, Sha: Parameter estimation for noisy chaotic systems based on an improved particle swarm optimization algorithm (2015)
  16. Anguelov, R.; Dumont, Y.; Lubuma, J.M.-S.; Shillor, M.: Dynamically consistent nonstandard finite difference schemes for epidemiological models (2014)
  17. Bradley, Ben K.; Jones, Brandon A.; Beylkin, Gregory; Sandberg, Kristian; Axelrad, Penina: Bandlimited implicit Runge-Kutta integration for astrodynamics (2014)
  18. Duch^ene, Vincent: On the rigid-lid approximation for two shallow layers of immiscible fluids with small density contrast (2014)
  19. Duque, José C.M.; Almeida, Rui M.P.; Antontsev, Stanislav N.: Numerical study of the porous medium equation with absorption, variable exponents of nonlinearity and free boundary (2014)
  20. Emelianenko, Maria; Torrejon, Diego; Denardo, Matthew A.; Socolofsky, Annika K.; Ryabov, Alexander D.; Collins, Terrence J.: Estimation of rate constants in nonlinear reactions involving chemical inactivation of oxidation catalysts (2014)

1 2 3 ... 9 10 11 next