SMT-RAT is an open source C++ toolbox for strategic and parallel SMT solving consisting of a collection of SMT compliant implementations of methods for solving quantifier-free (non)linear real and integer arithmetic (QF_LRA, QF_LIA, QF_NRA, QF_NIA) formulas, we refer to as modules. These modules can be combined to (1) an SMT solver or (2) a theory solver in order to extend the supported logics of an existing SMT solver by the supported logics of SMT-RAT. Further modules for closed quantifier-free formulas over the theory of fixed-size bitvectors (QF_BV) and quantifier-free formulas built over a signature of uninterpreted sort and function symbols (QF_UF) as well as combinations of these logics with already supported logics (QF_UFLRA, QF_UFLIA, QF_UFNRA, QF_UFNIA) are in progress.

References in zbMATH (referenced in 11 articles , 1 standard article )

Showing results 1 to 11 of 11.
Sorted by year (citations)

  1. Jovanović, Dejan: Solving nonlinear integer arithmetic with MCSAT (2017)
  2. Ábrahám, Erika; Abbott, John; Becker, Bernd; Bigatti, Anna M.; Brain, Martin; Buchberger, Bruno; Cimatti, Alessandro; Davenport, James H.; England, Matthew; Fontaine, Pascal; Forrest, Stephen; Griggio, Alberto; Kroening, Daniel; Seiler, Werner M.; Sturm, Thomas: \ssfSC$^2$: satisfiability checking meets symbolic computation. (Project paper) (2016)
  3. Eraşcu, Mădălina: Efficient simplification techniques for special real quantifier elimination with applications to the synthesis of optimal numerical algorithms (2016)
  4. Kremer, Gereon; Corzilius, Florian; Ábrahám, Erika: A generalised branch-and-bound approach and its application in SAT modulo nonlinear integer arithmetic (2016)
  5. Maréchal, Alexandre; Fouilhé, Alexis; King, Tim; Monniaux, David; Périn, Michael: Polyhedral approximation of multivariate polynomials using handelman’s theorem (2016)
  6. Tung, Vu Xuan; Van Khanh, To; Ogawa, Mizuhito: raSAT: an SMT solver for polynomial constraints (2016)
  7. Corzilius, Florian; Kremer, Gereon; Junges, Sebastian; Schupp, Stefan; Ábrahám, Erika: SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving (2015)
  8. Jaroschek, Maximilian; Dobal, Pablo Federico; Fontaine, Pascal: Adapting real quantifier elimination methods for conflict set computation (2015)
  9. Larraz, Daniel; Oliveras, Albert; Rodríguez-Carbonell, Enric; Rubio, Albert: Minimal-model-guided approaches to solving polynomial constraints and extensions (2014)
  10. Junges, Sebastian; Loup, Ulrich; Corzilius, Florian; Ábrahám, Erika: On Gröbner bases in the context of satisfiability-modulo-theories solving over the real numbers (2013)
  11. Corzilius, Florian; Loup, Ulrich; Junges, Sebastian; Ábrahám, Erika: SMT-RAT: an SMT-compliant nonlinear real arithmetic toolbox (tool presentation) (2012) ioport