glmmAK

Package glmmAK: Generalized Linear Mixed Models. This package implements maximum-likelihood estimation in the logistic regression with both binary (logit model) and multinomial response (cumulative logit model), and in the Poisson regression (log-linear model). Secondly, Bayesian estimation based on MCMC in the logistic and Poisson regression model with random effects whose distribution is specified as a penalized normal mixture are implemented. The methodology is described and the package used in: KOMÁREK, A. and LESAFFRE, E. (2008). Generalized linear mixed model with a penalized Gaussian mixture as a random-effects distribution. Computational Statistics and Data Analysis, 52(7), 3441–3458,


References in zbMATH (referenced in 16 articles )

Showing results 1 to 16 of 16.
Sorted by year (citations)

  1. Cipolli, William III; Hanson, Timothy: Computationally tractable approximate and smoothed polya trees (2017)
  2. Bao, Junshu; Hanson, Timothy E.: A mean-constrained finite mixture of normals model (2016)
  3. Dalla Valle, Luciana; De Giuli, Maria Elena; Tarantola, Claudia; Manelli, Claudio: Default probability estimation via pair copula constructions (2016)
  4. Heinzl, Felix; Tutz, Gerhard: Additive mixed models with approximate Dirichlet process mixtures: the EM approach (2016)
  5. Mabon, G.: Adaptive estimation of marginal random-effects densities in linear mixed-effects models (2015)
  6. Dion, Charlotte: New adaptive strategies for nonparametric estimation in linear mixed models (2014)
  7. Kauermann, Göran; Meyer, Renate: Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas (2014)
  8. Gałecki, Andrzej; Burzykowski, Tomasz: Linear mixed-effects models using R. A step-by-step approach (2013)
  9. Baghishani, Hossein; Rue, Håvard; Mohammadzadeh, Mohsen: On a hybrid data cloning method and its application in generalized linear mixed models (2012)
  10. Schellhase, Christian; Kauermann, Göran: Density estimation and comparison with a penalized mixture approach (2012)
  11. Broström, Göran; Holmberg, Henrik: Generalized linear models with clustered data: fixed and random effects models (2011)
  12. Hosseini, Fatemeh; Eidsvik, Jo; Mohammadzadeh, Mohsen: Approximate Bayesian inference in spatial GLMM with skew normal latent variables (2011)
  13. Sartori, N.; Severini, T.A.; Marras, E.: An alternative specification of generalized linear mixed models (2010)
  14. Claeskens, Gerda; Hart, Jeffrey D.: Rejoinder to: Goodness-of-fit tests in mixed models (2009)
  15. Claeskens, Gerda; Hart, Jeffrey D.: Goodness-of-fit tests in mixed models (2009)
  16. Komárek, Arnošt; Lesaffre, Emmanuel: Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution (2008)