Image Processing Toolbox

Matlab IPT: Image Processing Toolbox™ provides a comprehensive set of reference-standard algorithms, functions, and apps for image processing, analysis, visualization, and algorithm development. You can perform image analysis, image segmentation, image enhancement, noise reduction, geometric transformations, and image registration. Many toolbox functions support multicore processors, GPUs, and C-code generation. Image Processing Toolbox supports a diverse set of image types, including high dynamic range, gigapixel resolution, embedded ICC profile, and tomographic. Visualization functions and apps let you explore images and videos, examine a region of pixels, adjust color and contrast, create contours or histograms, and manipulate regions of interest (ROIs). The toolbox supports workflows for processing, displaying, and navigating large images.

References in zbMATH (referenced in 31 articles )

Showing results 1 to 20 of 31.
Sorted by year (citations)

1 2 next

  1. Browning, Alexander P.; Haridas, Parvathi; Simpson, Matthew J.: A Bayesian sequential learning framework to parameterise continuum models of melanoma invasion into human skin (2019)
  2. Divo, Eduardo; Moslehy, Faisal; Kassab, Alain: RBF-based laser speckle pattern digital image correlation method for surface strain measurements (2019)
  3. Jang Ik Cho, Xiaofeng Wang, Yifan Xu, Jiayang Sun: LISA: a MATLAB package for Longitudinal Image Sequence Analysis (2019) arXiv
  4. Zhang, Wenyuan; Huang, Tianyu; Chen, Jun: A robust bias-correction fuzzy weighted C-ordered-means clustering algorithm (2019)
  5. Deng, Daiguo; Wu, Hefeng; Sun, Peng; Wang, Ruomei; Shi, Zhuo; Luo, Xiaonan: A new geometric modeling approach for woven fabric based on Frenet frame and spiral equation (2018)
  6. Onur Yorulmaz, A. Enis Cetin: Deconvolution using Fourier Transform phase, l1 and l2 balls, and filtered variation (2018) not zbMATH
  7. Durand, Sylvain; Frapart, Yves-Michel; Kerebel, Maud: Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization (2017)
  8. Grip, N.; Pfander, G. E.: Efficient analysis of OFDM channels (2017)
  9. Bhandari, A. K.; Kumar, Anil; Singh, G. K.; Soni, Vivek: Dark satellite image enhancement using knee transfer function and gamma correction based on DWT-SVD (2016) ioport
  10. Ma, Yan; Chen, Lajiao; Liu, Peng; Lu, Ke: Parallel programing templates for remote sensing image processing on GPU architectures: design and implementation (2016) ioport
  11. Ohura, Ryuji; Minamoto, Teruya: A blind digital image watermarking method based on the dyadic wavelet packet transform and fast interval arithmetic techniques (2015)
  12. Rybář, Vojtěch; Vejchodský, Tomáš: On the number of stationary patterns in reaction-diffusion systems. (2015)
  13. Sundararajan, D.: Discrete wavelet transform. A signal processing approach (2015)
  14. Cerda, Mauricio; Girau, Bernard: Asymmetry in neural fields: a spatiotemporal encoding mechanism (2013)
  15. Stanimirović, Predrag; Miladinović, Marko; Stojanović, Igor; Miljković, Sladjana: Application of the partitioning method to specific Toeplitz matrices (2013)
  16. Stanimirović, Predrag S.; Chountasis, Spiros; Pappas, Dimitrios; Stojanović, Igor: Removal of blur in images based on least squares solutions (2013)
  17. Gocławski, Jarosław; Sekulska-Nalewajko, Joanna; Kuźniak, Elżbieta: Neural network segmentation of images from stained cucurbits leaves with colour symptoms of biotic and abiotic stresses (2012)
  18. Gunturk, Bahadir Kursat (ed.); Li, Xin (ed.): Image restoration. Fundamentals and advances (2012)
  19. Soltanzadeh, Ramin; Rabbani, Hossein; Talebi, Ardeshir: Extraction of nucleolus candidate zone in white blood cells of peripheral blood smear images using curvelet transform (2012)
  20. Schmeelk, John: Medical image edge detectors (2011)

1 2 next