STRUCTURE

The program structure is a free software package for using multi-locus genotype data to investigate population structure. Its uses include inferring the presence of distinct populations, assigning individuals to populations, studying hybrid zones, identifying migrants and admixed individuals, and estimating population allele frequencies in situations where many individuals are migrants or admixed. It can be applied to most of the commonly-used genetic markers, including SNPS, microsatellites, RFLPs and AFLPs.


References in zbMATH (referenced in 70 articles , 1 standard article )

Showing results 1 to 20 of 70.
Sorted by year (citations)

1 2 3 4 next

  1. Derbanosov, R. Yu.; Irkhin, I. A.: Issues of stability and uniqueness of stochastic matrix factorization (2020)
  2. Marbac, Matthieu; Sedki, Mohammed; Patin, Tienne: Variable selection for mixed data clustering: application in human population genomics (2020)
  3. Najafi, Amir; Motahari, Seyed Abolfazl; Rabiee, Hamid R.: Reliable clustering of Bernoulli mixture models (2020)
  4. Xu, Min; Jog, Varun; Loh, Po-Ling: Optimal rates for community estimation in the weighted stochastic block model (2020)
  5. Calleja-Rodriguez, Ainhoa; Li, Zitong; Hallingbäck, Henrik R.; Sillanpää, Mikko J.; Wu, Harry X.; Abrahamsson, Sara; García-Gil, Maria Rosario: Analysis of phenotypic- and estimated breeding values (EBV) to dissect the genetic architecture of complex traits in a Scots pine three-generation pedigree design (2019)
  6. Elliott, Lloyd T.; De Iorio, Maria; Favaro, Stefano; Adhikari, Kaustubh; Teh, Yee Whye: Modeling population structure under hierarchical Dirichlet processes (2019)
  7. Banerjee, Debapratim: Contiguity and non-reconstruction results for planted partition models: the dense case (2018)
  8. Caye, Kevin; Jay, Flora; Michel, Olivier; François, Olivier: Fast inference of individual admixture coefficients using geographic data (2018)
  9. Chen, Yen-Chi; Wang, Y. Samuel; Erosheva, Elena A.: On the use of bootstrap with variational inference: theory, interpretation, and a two-sample test example (2018)
  10. Miller, Jeffrey W.; Harrison, Matthew T.: Mixture models with a prior on the number of components (2018)
  11. Tal, Omri; Tran, Tat Dat: New perspectives on multilocus ancestry informativeness (2018)
  12. Wang, Chong; Blei, David M.: A general method for robust Bayesian modeling (2018)
  13. Zhao, Shiwen; Engelhardt, Barbara E.; Mukherjee, Sayan; Dunson, David B.: Fast moment estimation for generalized latent Dirichlet models (2018)
  14. Zhou, Mingyuan: Nonparametric Bayesian negative binomial factor analysis (2018)
  15. Fewster, R. M.: Some applications of genetics in statistical ecology (2017)
  16. Jones, Graham: Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent (2017)
  17. Wilton, Peter R.; Baduel, Pierre; Landon, Matthieu M.; Wakeley, John: Population structure and coalescence in pedigrees: comparisons to the structured coalescent and a framework for inference (2017)
  18. Fearnhead, Paul; Meligkotsidou, Loukia: Augmentation schemes for particle MCMC (2016)
  19. Roques, L.; Walker, E.; Franck, P.; Soubeyrand, S.; Klein, E. K.: Using genetic data to estimate diffusion rates in heterogeneous landscapes (2016)
  20. Zheng, Xiuwen; Weir, Bruce S.: Eigenanalysis of SNP data with an identity by descent interpretation (2016)

1 2 3 4 next


Further publications can be found at: http://pritchardlab.stanford.edu/publications.html