A preconditioned hybrid SVD method for accurately computing singular triplets of large matrices. The computation of a few singular triplets of large, sparse matrices is a challenging task, especially when the smallest magnitude singular values are needed in high accuracy. Most recent efforts try to address this problem through variations of the Lanczos bidiagonalization method, but they are still challenged even for medium matrix sizes due to the difficulty of the problem. We propose a novel SVD approach that can take advantage of preconditioning and of any well-designed eigensolver to compute both largest and smallest singular triplets. Accuracy and efficiency is achieved through a hybrid, two-stage meta-method, PHSVDS. In the first stage, PHSVDS solves the normal equations up to the best achievable accuracy. If further accuracy is required, the method switches automatically to an eigenvalue problem with the augmented matrix. Thus it combines the advantages of the two stages, faster convergence and accuracy, respectively. For the augmented matrix, solving the interior eigenvalue is facilitated by proper use of good initial guesses from the first stage and an efficient implementation of the refined projection method. We also discuss how to precondition PHSVDS and to cope with some issues that arise. Numerical experiments illustrate the efficiency and robustness of the method.