HmmSeq

HmmSeq: a hidden Markov model for detecting differentially expressed genes from RNA-seq data. We introduce hmmSeq, a model-based hierarchical Bayesian technique for detecting differentially expressed genes from RNA-seq data. Our novel hmmSeq methodology uses hidden Markov models to account for potential co-expression of neighboring genes. In addition, hmmSeq employs an integrated approach to studies with technical or biological replicates, automatically adjusting for any extra-Poisson variability. Moreover, for cases when paired data are available, hmmSeq includes a paired structure between treatments that incoporates subject-specific effects. To perform parameter estimation for the hmmSeq model, we develop an efficient Markov chain Monte Carlo algorithm. Further, we develop a procedure for detection of differentially expressed genes that automatically controls false discovery rate. A simulation study shows that the hmmSeq methodology performs better than competitors in terms of receiver operating characteristic curves. Finally, the analyses of three publicly available RNA-seq data sets demonstrate the power and flexibility of the hmmSeq methodology. An R package implementing the hmmSeq framework will be submitted to CRAN upon publication of the manuscript.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element