PISA consists of two parts: PISA is a text-based interface for search algorithms. It splits an optimization process into two modules. One module contains all parts specific to the optimization problem (e.g., evaluation of solutions, problem representation, variation of solutions). The other module contains the parts which are independent of the optimization problem (mainly the selection process). These two modules are implemented as separate programs which communicate through text files. PISA is a library of ready-to-go modules, namely optimization problems (test and benchmark problems), selection modules (evolutionary multi-objective optimizers) and modules for performance assessment.

References in zbMATH (referenced in 53 articles , 1 standard article )

Showing results 1 to 20 of 53.
Sorted by year (citations)

1 2 3 next

  1. Redondo, J.L.; Fernández, J.; Ortigosa, P.M.: FEMOEA: a fast and efficient multi-objective evolutionary algorithm (2017)
  2. Ye Tian, Ran Cheng, Xingyi Zhang, Yaochu Jin: PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization (2017) arXiv
  3. Martí, Luis; García, Jesús; Berlanga, Antonio; Molina, José M.: MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm (2016)
  4. Antonelli, Michela; Ducange, Pietro; Marcelloni, Francesco: A fast and efficient multi-objective evolutionary learning scheme for fuzzy rule-based classifiers (2014)
  5. Comis Da Ronco, Claudio; Ponza, Rita; Benini, Ernesto: Aerodynamic shape optimization in aeronautics: a fast and effective multi-objective approach (2014)
  6. Denysiuk, Roman; Costa, Lino; Santo, Isabel Espírito: Generalized multiobjective evolutionary algorithm guided by descent directions (2014)
  7. Derbel, Bilel; Humeau, Jérémie; Liefooghe, Arnaud; Verel, Sébastien: Distributed localized bi-objective search (2014)
  8. Evtushenko, Yu.G.; Posypkin, M.A.: Method of non-uniform coverages to solve the multicriteria optimization problems with guaranteed accuracy (2014)
  9. Antonelli, Michela; Ducange, Pietro; Marcelloni, Francesco: An efficient multi-objective evolutionary fuzzy system for regression problems (2013)
  10. Frutos, Mariano; Tohmé, Fernando: A multi-objective memetic algorithm for the job-shop scheduling problem (2013)
  11. Humeau, J.; Liefooghe, A.; Talbi, E.-G.; Verel, S.: ParadisEO-MO: from fitness landscape analysis to efficient local search algorithms (2013)
  12. Kim, Hyoungjin; Liou, Meng-Sing: New fitness sharing approach for multi-objective genetic algorithms (2013)
  13. Mavrotas, George; Florios, Kostas: An improved version of the augmented $\varepsilon$-constraint method (AUGMECON2) for finding the exact Pareto set in multi-objective integer programming problems (2013)
  14. Almeida, Carolina P.; Gonçalves, Richard A.: An experimental analysis of evolutionary heuristics for the biobjective traveling purchaser problem (2012)
  15. Liefooghe, Arnaud; Basseur, Matthieu; Humeau Jérémie; Jourdan, Laetitia; Talbi, El-Ghazali: On optimizing a bi-objective flowshop scheduling problem in an uncertain environment (2012)
  16. Liefooghe, Arnaud; Humeau, Jérémie; Mesmoudi, Salma; Jourdan, Laetitia; Talbi, El-Ghazali: On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems (2012)
  17. Ochoa, Gabriela; Hyde, Matthew; Curtois, Tim; Vazquez-Rodriguez, Jose A.; Walker, James; Gendreau, Michel; Kendall, Graham; McCollum, Barry; Parkes, Andrew J.; Petrovic, Sanja; Burke, Edmund K.: HyFlex: a benchmark framework for cross-domain heuristic search (2012)
  18. Liefooghe, Arnaud; Jourdan, Laetitia; Talbi, El-Ghazali: A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO (2011) ioport
  19. Soylu, Banu; Ulusoy, Selda Kapan: A preference ordered classification for a multi-objective max-min redundancy allocation problem (2011)
  20. Zhu, Weihang; Yaseen, Ashraf; Li, Yaohang: DEMCMC-GPU: an efficient multi-objective optimization method with GPU acceleration on the Fermi architecture (2011) ioport

1 2 3 next

Further publications can be found at: http://www.tik.ee.ethz.ch/sop/publications/