References in zbMATH (referenced in 251 articles , 1 standard article )

Showing results 1 to 20 of 251.
Sorted by year (citations)

1 2 3 ... 11 12 13 next

  1. Boehmke, Brad; Greenwell, Brandon M.: Hands-on machine learning with R (2020)
  2. Guillaume, Serge; Ros, Frédéric: A family of unsupervised sampling algorithms (2020)
  3. Li, Qing; Yao, Kehui; Zhang, Xinyu: A change-point detection and clustering method in the recurrent-event context (2020)
  4. Vassilevski, Yuri; Terekhov, Kirill; Nikitin, Kirill; Kapyrin, Ivan: Parallel finite volume computation on general meshes (2020)
  5. Buchholz, Stefanie; Gamst, Mette; Pisinger, David: A comparative study of time aggregation techniques in relation to power capacity expansion modeling (2019)
  6. Ceselli, Alberto; Fiore, Marco; Premoli, Marco; Secci, Stefano: Optimized assignment patterns in mobile edge cloud networks (2019)
  7. Etesami, S. Rasoul: A simple framework for stability analysis of state-dependent networks of heterogeneous agents (2019)
  8. Fernández, Daniel; Arnold, Richard; Pledger, Shirley; Liu, Ivy; Costilla, Roy: Finite mixture biclustering of discrete type multivariate data (2019)
  9. Kharoubi, Rachid; Oualkacha, Karim; Mkhadri, Abdallah: The cluster correlation-network support vector machine for high-dimensional binary classification (2019)
  10. Maragoudakis, Manolis: Data analysis, simulation and visualization for environmentally safe maritime data (2019)
  11. Sciacchitano, Federica; Lugaro, Silvio; Sorrentino, Alberto: Sparse Bayesian imaging of solar flares (2019)
  12. Steinley, Douglas L.; Brusco, M. J.: Using an iterative reallocation partitioning algorithm to verify test multidimensionality (2019)
  13. Sun, Will Wei; Li, Lexin: Dynamic tensor clustering (2019)
  14. Wang, Wan-Lun: Mixture of multivariate (t) nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values (2019)
  15. Wang, Wan-Lun; Castro, Luis M.; Chang, Yen-Ting; Lin, Tsung-I: Mixtures of restricted skew-(t) factor analyzers with common factor loadings (2019)
  16. Wang, Wan-Lun; Castro, Luis M.; Lachos, Victor H.; Lin, Tsung-I: Model-based clustering of censored data via mixtures of factor analyzers (2019)
  17. Acosta, Marco A.: Machine learning core inflation (2018)
  18. Ali, Hafiz Tiomoko; Couillet, Romain: Improved spectral community detection in large heterogeneous networks (2018)
  19. Badal, Prakash S.; Das, Ashish: Efficient algorithms using subiterative convergence for Kemeny ranking problem (2018)
  20. Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat; Zhang, Zhiwen: Cluster-based generalized multiscale finite element method for elliptic PDEs with random coefficients (2018)

1 2 3 ... 11 12 13 next