References in zbMATH (referenced in 17 articles )

Showing results 1 to 17 of 17.
Sorted by year (citations)

  1. Bostan, Alin; Kauers, Manuel; Van Hoeij, Mark: The complete generating function for Gessel walks is algebraic (2010)
  2. Kohl, Karen; Stan, Flavia: An algorithmic approach to the Mellin transform method (2010)
  3. Stan, Flavia: On recurrences for Ising integrals (2010)
  4. Blümlein, Johannes; Kauers, Manuel; Klein, Sebastian; Schneider, Carsten: Determining the closed forms of the anomalous dimensions and Wilson coefficients from Mellin moments by means of computer algebra (2009)
  5. Gao, Xiao-Shan; Luo, Yong; Yuan, Chunming: A characteristic set method for ordinary difference polynomial systems (2009)
  6. Gerhold, Stefan; Warnung, Richard: Finding efficient recursions for risk aggregation by computer algebra (2009)
  7. Kauers, Manuel; Koutschan, Christoph: A Mathematica package for $q$-holonomic sequences and power series (2009)
  8. Stan, Flavia: Computer-assisted proofs of special function identities related to Poisson integrals (2009)
  9. Gerhold, Stefan; Glebsky, Lev; Schneider, Carsten; Weiss, Howard; Zimmermann, Burkhard: Computing the complexity for Schelling segregation models (2008)
  10. Pillwein, Veronika: Positivity of certain sums over Jacobi kernel polynomials (2008)
  11. Kauers, Manuel: An algorithm for deciding zero equivalence of nested polynomially recurrent sequences (2007)
  12. Paule, Peter; Schneider, Carsten: Truncating binomial series with symbolic summation (2007)
  13. Bećirović, A.; Paule, P.; Pillwein, V.; Riese, A.; Schneider, C.; Schöberl, J.: Hypergeometric summation algorithms for high-order finite elements (2006)
  14. Andrews, George E.; Paule, Peter; Schneider, Carsten: Plane partitions. VI: Stembridge’s TSPP theorem (2005)
  15. Chyzak, Frédéric; Mishna, Marni; Salvy, Bruno: Effective scalar products of D-finite symmetric functions (2005)
  16. Paule, Peter; Schneider, Carsten: Computer proofs of a new family of harmonic number identities. (2003)
  17. Fulmek, M.; Krattenthaler, C.: The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis. II (2000)