FreeFem++

FreeFem++ is an implementation of a language dedicated to the finite element method. It enables you to solve Partial Differential Equations (PDE) easily. Problems involving PDE (2d, 3d) from several branches of physics such as fluid-structure interactions require interpolations of data on several meshes and their manipulation within one program. FreeFem++ includes a fast 2^d-tree-based interpolation algorithm and a language for the manipulation of data on multiple meshes (as a follow up of bamg). FreeFem++ is written in C++ and the FreeFem++ language is a C++ idiom. It runs on any Unix-like OS (with g++ version 3 or higher, X11R6 or OpenGL with GLUT) Linux, FreeBSD, Solaris 10, Microsoft Windows ( 2000, NT, XP, Vista,7 ) and MacOS X (native version using OpenGL). FreeFem++ replaces the older freefem and freefem+.


References in zbMATH (referenced in 397 articles , 3 standard articles )

Showing results 1 to 20 of 397.
Sorted by year (citations)

1 2 3 ... 18 19 20 next

  1. Beretta, E.; Cavaterra, C.; Ortega, J.H.; Zamorano, S.: Size estimates of an obstacle in a stationary Stokes fluid (2017)
  2. Bonnefon, Olivier; Coville, Jér^ome; Legendre, Guillaume: Concentration phenomenon in some non-local equation (2017)
  3. Caliari, M.; Zuccher, S.: Quasi-Newton minimization for the $p(x)$-Laplacian problem (2017)
  4. Camaño, Jessika; Oyarzúa, Ricardo; Tierra, Giordano: Analysis of an augmented mixed-FEM for the Navier-Stokes problem (2017)
  5. Cherfils, Laurence; Fakih, Hussein; Miranville, Alain: A complex version of the Cahn-Hilliard equation for grayscale image inpainting (2017)
  6. Discacciati, Marco; Oyarzúa, Ricardo: A conforming mixed finite element method for the Navier-Stokes/Darcy coupled problem (2017)
  7. Fernández, F.J.; Alvarez-Vázquez, L.J.; Martínez, A.; Vázquez-Méndez, M.E.: A 3D optimal control problem related to the urban heat islands (2017)
  8. Giacomini, Matteo; Pantz, Olivier; Trabelsi, Karim: Certified descent algorithm for shape optimization driven by fully-computable a posteriori error estimators (2017)
  9. Grote, Marcus J.; Kray, Marie; Nahum, Uri: Adaptive eigenspace method for inverse scattering problems in the frequency domain (2017)
  10. Haferssas, R.; Jolivet, P.; Nataf, F.: An additive Schwarz method type theory for Lions’s algorithm and a symmetrized optimized restricted additive Schwarz method (2017)
  11. Jadamba, B.; Khan, A.; Sama, M.: Error estimates for integral constraint regularization of state-constrained elliptic control problems (2017)
  12. Kuo, Frances Y.; Scheichl, Robert; Schwab, Christoph; Sloan, Ian H.; Ullmann, Elisabeth: Multilevel quasi-Monte Carlo methods for lognormal diffusion problems (2017)
  13. Le Bris, Claude; Legoll, Frédéric; Madiot, François: A numerical comparison of some multiscale finite element approaches for advection-dominated problems in heterogeneous media (2017)
  14. Mammeri, Youcef; Sellier, Damien: A surface model of nonlinear, non-steady-state phloem transport (2017)
  15. Miklos Homolya, Lawrence Mitchell, Fabio Luporini, David A. Ham: TSFC: a structure-preserving form compiler (2017) arXiv
  16. Nicaise, S.; Merabet, I.: A mixed discontinuous finite element method for folded Naghdi’s shell in Cartesian coordinates (2017)
  17. Norkin, M.V.: Cavitation deceleration of a circular cylinder in a liquid after impact (2017)
  18. Santiago Badia, Alberto F. Martin, Javier Principe: FEMPAR: An object-oriented parallel finite element framework (2017) arXiv
  19. Ulrich Wilbrandt, Clemens Bartsch, Naveed Ahmed, Najib Alia, Felix Anker, Laura Blank, Alfonso Caiazzo, Sashikumaar Ganesan, Swetlana Giere, Gunar Matthies, Raviteja Meesala, Abdus Shamim, Jagannath Venkatesan, Volker John: ParMooN - a modernized program package based on mapped finite elements (2017) arXiv
  20. Ancel, Alexandre; Fortin, Alexandre; Garnotel, Simon; Miraucourt, Olivia; Tarabay, Ranine: PHANTOM project: development and validation of the pipeline from MRA acquisition to MRA simulations (2016)

1 2 3 ... 18 19 20 next