A new version of the multi-dimensional integration and event generation package BASES/SPRING. The Monte Carlo integration and event generation package BASES/SPRING V1.0 due to S. Kawabata [Comput. Phys. Commun. 41, 127 (1986)] has been upgraded so as to generate events with 50 independent variables, and to integrate functions with an alternating sign. Its ability to integrate real functions with indefinite sign is found to be useful in the numerical evaluation of interference effects among various amplitudes. Besides these changes, its program structure has been completely reformed.

References in zbMATH (referenced in 19 articles , 1 standard article )

Showing results 1 to 19 of 19.
Sorted by year (citations)

  1. Borowka, S.; Heinrich, G.; Jones, S.P.; Kerner, M.; Schlenk, J.; Zirke, T.: SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop (2015)
  2. Yuasa, F.; de Doncker, E.; Hamaguchi, N.; Ishikawa, T.; Kato, K.; Kurihara, Y.; Fujimoto, J.; Shimizu, Y.: Numerical computation of two-loop box diagrams with masses (2012)
  3. Carter, Jonathon; Heinrich, Gudrun: SecDec: A general program for sector decomposition (2011)
  4. Monni, Pier Francesco; Gehrmann, Thomas; Luisoni, Gionata: Two-loop soft corrections and resummation of the thrust distribution in the dijet region (2011)
  5. Belkić, Dževad: Review of theories on double electron capture in fast ion-atom collisions (2010)
  6. Sumino, Yukinari; Yokoya, Hiroshi: Bound-state effects on kinematical distributions of top quarks at hadron colliders (2010)
  7. Dao Thi Nhung; Le Duc Ninh: D0C: A code to calculate scalar one-loop four-point integrals with complex masses (2009)
  8. Bogner, Christian; Weinzierl, Stefan: Resolution of singularities for multi-loop integrals (2008)
  9. Kurihara, Y.; Kaneko, T.: Numerical contour integration for loop integrals (2006)
  10. Binoth, T.; Heinrich, G.: Numerical evaluation of multi-loop integrals by sector decomposition (2004)
  11. Gehrmann-De Ridder, A.; Gehrmann, T.; Heinrich, G.: Four-particle phase space integrals in massless QCD (2004)
  12. Imai, Takaaki; Takayama, Yastoshi: Stability of fuzzy $S^2\times S^2$ geometry in IIB matrix model (2004)
  13. Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Kato, K.; Kawabata, S.; Munehisa, T.; Tanaka, H.: QCD event generators with next-to-leading order matrix-elements and parton showers (2003)
  14. Tobimatsu, Keijiro; Igarashi, Masataka: Precise formula for the radiative Bhabha scattering (2001)
  15. Binoth, T.; Heinrich, G.: An automatized algorithm to compute infrared divergent multi-loop integrals. (2000)
  16. Jadach, S.: Foam: Multi-dimensional general purpose Monte Carlo generator with self-adapting simplical grid (2000)
  17. Abraham, K.J.; Haines, L.M.: A new technique for sampling multi-modal distributions (1999)
  18. Kawabata, Setsuya: A new version of the multi-dimensional integration and event generation package BASES/SPRING (1995)
  19. Kawabata, S.; Kaneko, T.: A multi-dimensional integration package for a vector processor. (1988) ioport