Many numerical algorithms and scientific computations on unstructured meshes can be viewed as the independent application of a local operation everywhere on a mesh. This local operation is often called a computational kernel and its independent application lends itself naturally to parallel computation. An unstructured mesh can be described by sets of entities (vertices, edges, cells) and the connectivity between those sets forming the topology of the mesh. PyOP2 is a domain-specific language (DSL) for the parallel executions of computational kernels on unstructured meshes or graphs.

References in zbMATH (referenced in 13 articles )

Showing results 1 to 13 of 13.
Sorted by year (citations)

  1. Reguly, István Z.; Mudalige, Gihan R.: Productivity, performance, and portability for computational fluid dynamics applications (2020)
  2. Gibson, Thomas H.; McRae, Andrew T. T.; Cotter, Colin J.; Mitchell, Lawrence; Ham, David A.: Compatible finite element methods for geophysical flows. Automation and implementation using Firedrake (2019)
  3. Chang, Justin; Fabien, Maurice S.; Knepley, Matthew G.; Mills, Richard T.: Comparative study of finite element methods using the time-accuracy-size (TAS) spectrum analysis (2018)
  4. Thomas H. Gibson, Lawrence Mitchell, David A. Ham, Colin J. Cotter: Slate: extending Firedrake’s domain-specific abstraction to hybridized solvers for geoscience and beyond (2018) arXiv
  5. Chang, J.; Nakshatrala, K. B.: Variational inequality approach to enforcing the non-negative constraint for advection-diffusion equations (2017)
  6. Luporini, Fabio; Ham, David A.; Kelly, Paul H. J.: An algorithm for the optimization of finite element integration loops (2017)
  7. Rathgeber, Florian; Ham, David A.; Mitchell, Lawrence; Lange, Michael; Luporini, Fabio; Mcrae, Andrew T. T.; Bercea, Gheorghe-Teodor; Markall, Graham R.; Kelly, Paul H. J.: Firedrake, automating the finite element method by composing abstractions (2017)
  8. Robert C. Kirby, Lawrence Mitchell: Solver composition across the PDE/linear algebra barrier (2017) arXiv
  9. Lange, Michael; Mitchell, Lawrence; Knepley, Matthew G.; Gorman, Gerard J.: Efficient mesh management in firedrake using PETSc DMPlex (2016)
  10. McRae, A. T. T.; Bercea, G.-T.; Mitchell, L.; Ham, D. A.; Cotter, C. J.: Automated generation and symbolic manipulation of tensor product finite elements (2016)
  11. Mitchell, Lawrence; Müller, Eike Hermann: High level implementation of geometric multigrid solvers for finite element problems: applications in atmospheric modelling (2016)
  12. Fabio Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-Teodor Bercea, J. Ramanujam, David A. Ham, Paul H.J. Kelly: COFFEE: an Optimizing Compiler for Finite Element Local Assembly (2014) arXiv
  13. Markall, Graham R.; Rathgeber, Florian; Mitchell, Lawrence; Loriant, Nicolas; Bertolli, Carlo; Ham, David A.; Kelly, Paul H. J.: Performance-portable finite element assembly using pyop2 and fenics (2013) ioport