HomCont, jointly developed with Alan Champneys (University of Bristol) and Yuri A Kuznetsov (Utrecht University), is a numerical toolbox for homoclinic bifurcation analysis. It is designed for use with AUTO written by Eusebius Doedel (Concordia University). Specifically, HomCont deals with continuation of codimension-one heteroclinic and homoclinic orbits to hyperbolic and saddle-node equilibria, including the detection of many codimension-two singularities and the continuation of these singularities in three or more parameters.

References in zbMATH (referenced in 189 articles , 1 standard article )

Showing results 1 to 20 of 189.
Sorted by year (citations)

1 2 3 ... 8 9 10 next

  1. Tao, Molei: Hyperbolic periodic orbits in nongradient systems and small-noise-induced metastable transitions (2018)
  2. Giraldo, Andrus; Krauskopf, Bernd; Osinga, Hinke M.: Saddle invariant objects and their global manifolds in a neighborhood of a homoclinic flip bifurcation of case B (2017)
  3. Li, Lin; Lin, Ping; Si, Xinhui; Zheng, Liancun: A numerical study for multiple solutions of a singular boundary value problem arising from laminar flow in a porous pipe with moving wall (2017)
  4. Stoykov, S.; Margenov, S.: Numerical methods and parallel algorithms for computation of periodic responses of plates (2017)
  5. Verschueren, Nicolas; Champneys, Alan: A model for cell polarization without mass conservation (2017)
  6. Al-Hdaibat, B.; Govaerts, W.; Kuznetsov, Yu.A.; Meijer, H.G.E.: Initialization of homoclinic solutions near Bogdanov-Takens points: Lindstedt-Poincaré compared with regular perturbation method (2016)
  7. Lenz, Eduardo; Pagano, Daniel J.; Tahim, André P.N.: Codimension-two bifurcation analysis in DC microgrids under droop control (2016)
  8. Linaro, Daniele; Storace, Marco: BAL: a library for the \itbrute-force analysis of dynamical systems (2016)
  9. Aguirre, Pablo: Bifurcations of two-dimensional global invariant manifolds near a noncentral saddle-node homoclinic orbit (2015)
  10. Algaba, A.; Fernández-Sánchez, F.; Merino, M.; Rodríguez-Luis, A.J.: Analysis of the T-point-Hopf bifurcation in the Lorenz system (2015)
  11. Algaba, Antonio; Domínguez-Moreno, María C.; Merino, Manuel; Rodríguez-Luis, Alejandro J.: Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems (2015)
  12. Gani, M.Osman; Ogawa, Toshiyuki: Instability of periodic traveling wave solutions in a modified Fitzhugh-Nagumo model for excitable media (2015)
  13. Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M.; Sandstede, Björn: Invariant manifolds and global bifurcations (2015)
  14. Guckenheimer, John; Lizarraga, Ian: Shilnikov homoclinic bifurcation of mixed-mode oscillations (2015)
  15. Kristiansen, K.Uldall: Computation of saddle-type slow manifolds using iterative methods (2015)
  16. Kuehn, Christian: Numerical continuation and SPDE stability for the 2D cubic-quintic Allen-Cahn equation (2015)
  17. Liu, Ping; Siettos, C.I.; Gear, C.W.; Kevrekidis, I.G.: Equation-free model reduction in agent-based computations: coarse-grained bifurcation and variable-free rare event analysis (2015)
  18. Sahoo, Banshidhar; Poria, Swarup: Chaos to order: role of additional food to predator in a food chain model (2015)
  19. West, Simon; Bridge, Lloyd J.; White, Michael R.H.; Paszek, Pawel; Biktashev, Vadim N.: A method of `speed coefficients’ for biochemical model reduction applied to the NF-$\kappa$B system (2015)
  20. Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J.: Comment on “Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems” (2014)

1 2 3 ... 8 9 10 next