HomCont

HomCont, jointly developed with Alan Champneys (University of Bristol) and Yuri A Kuznetsov (Utrecht University), is a numerical toolbox for homoclinic bifurcation analysis. It is designed for use with AUTO written by Eusebius Doedel (Concordia University). Specifically, HomCont deals with continuation of codimension-one heteroclinic and homoclinic orbits to hyperbolic and saddle-node equilibria, including the detection of many codimension-two singularities and the continuation of these singularities in three or more parameters.


References in zbMATH (referenced in 176 articles , 1 standard article )

Showing results 1 to 20 of 176.
Sorted by year (citations)

1 2 3 ... 7 8 9 next

  1. Al-Hdaibat, B.; Govaerts, W.; Kuznetsov, Yu.A.; Meijer, H.G.E.: Initialization of homoclinic solutions near Bogdanov-Takens points: Lindstedt-Poincaré compared with regular perturbation method (2016)
  2. Aguirre, Pablo: Bifurcations of two-dimensional global invariant manifolds near a noncentral saddle-node homoclinic orbit (2015)
  3. Algaba, A.; Fernández-Sánchez, F.; Merino, M.; Rodríguez-Luis, A.J.: Analysis of the T-point-Hopf bifurcation in the Lorenz system (2015)
  4. Algaba, Antonio; Domínguez-Moreno, María C.; Merino, Manuel; Rodríguez-Luis, Alejandro J.: Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems (2015)
  5. Gani, M.Osman; Ogawa, Toshiyuki: Instability of periodic traveling wave solutions in a modified Fitzhugh-Nagumo model for excitable media (2015)
  6. Kristiansen, K.Uldall: Computation of saddle-type slow manifolds using iterative methods (2015)
  7. Liu, Ping; Siettos, C.I.; Gear, C.W.; Kevrekidis, I.G.: Equation-free model reduction in agent-based computations: coarse-grained bifurcation and variable-free rare event analysis (2015)
  8. Sahoo, Banshidhar; Poria, Swarup: Chaos to order: role of additional food to predator in a food chain model (2015)
  9. West, Simon; Bridge, Lloyd J.; White, Michael R.H.; Paszek, Pawel; Biktashev, Vadim N.: A method of `speed coefficients’ for biochemical model reduction applied to the NF-$\kappa$B system (2015)
  10. Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J.: Comment on “Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems” (2014)
  11. Bindel, D.; Friedman, M.; Govaerts, W.; Hughes, J.; Kuznetsov, Yu.A.: Numerical computation of bifurcations in large equilibrium systems in Matlab (2014)
  12. Deconinck, Bernard; Trichtchenko, Olga: Stability of periodic gravity waves in the presence of surface tension (2014)
  13. Dong, Chengwei; Lan, Yueheng: A variational approach to connecting orbits in nonlinear dynamical systems (2014)
  14. Ducceschi, Michele; Touzé, Cyril; Bilbao, Stefan; Webb, Craig J.: Nonlinear dynamics of rectangular plates: investigation of modal interaction in free and forced vibrations (2014)
  15. Ei, Shin-Ichiro; Izuhara, Hirofumi; Mimura, Masayasu: Spatio-temporal oscillations in the Keller-Segel system with logistic growth (2014)
  16. Gavassoni, Elvidio; Gonçalves, Paulo B.; Roehl, Deane M.: Nonlinear vibration modes and instability of a conceptual model of a spar platform (2014)
  17. Laing, Carlo R.: Numerical bifurcation theory for high-dimensional neural models (2014)
  18. Planqué, Robert; Bruggeman, Frank J.; Teusink, Bas; Hulshof, Josephus: Understanding bistability in yeast glycolysis using general properties of metabolic pathways (2014)
  19. Rusinek, Rafal; Mitura, Andrzej; Warminski, Jerzy: Time delay Duffing’s systems: chaos and chatter control (2014)
  20. van der Heijden, G.H.M.; Yagasaki, Kazuyuki: Horseshoes for the nearly symmetric heavy top (2014)

1 2 3 ... 7 8 9 next