CP2K
CP2K is a quantum chemistry and solid state physics software package that can perform atomistic simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems. CP2K provides a general framework for different modeling methods such as DFT using the mixed Gaussian and plane waves approaches GPW and GAPW. Supported theory levels include DFTB, LDA, GGA, MP2, RPA, semi-empirical methods (AM1, PM3, PM6, RM1, MNDO, …), and classical force fields (AMBER, CHARMM, …). CP2K can do simulations of molecular dynamics, metadynamics, Monte Carlo, Ehrenfest dynamics, vibrational analysis, core level spectroscopy, energy minimization, and transition state optimization using NEB or dimer method. (Detailed overview of features.) CP2K is written in Fortran 2003 and can be run efficiently in parallel using a combination of multi-threading, MPI, and CUDA. It is freely available under the GPL license. It is therefore easy to give the code a try, and to make modifications as needed.
Keywords for this software
References in zbMATH (referenced in 8 articles )
Showing results 1 to 8 of 8.
Sorted by year (- Delle Site, Luigi; Klein, Rupert: Liouville-type equations for the (n)-particle distribution functions of an open system (2020)
- He Ma, Wennie Wang, Siyoung Kim, Man-Hin Cheng, Marco Govoni, Giulia Galli: PyCDFT: A Python package for constrained density functional theory (2020) arXiv
- Yunqi Shao, Matti Hellström, Pavlin D. Mitev, Lisanne Knijff, Chao Zhang: PiNN: A Python Library for Building Atomic Neural Networks of Molecules and Materials (2019) arXiv
- Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, Weinan E: DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models (2019) arXiv
- Susi Lehtola; Conrad Steigemann; Micael J.T. Oliveira; Miguel A.L. Marques: Recent developments in libxc - A comprehensive library of functionals for density functional theory (2018) not zbMATH
- Delle Site, Luigi; Praprotnik, Matej: Molecular systems with open boundaries: theory and simulation (2017)
- Leimkuhler, Benedict; Shang, Xiaocheng: Pairwise adaptive thermostats for improved accuracy and stability in dissipative particle dynamics (2016)
- Leimkuhler, Benedict; Shang, Xiaocheng: Adaptive thermostats for noisy gradient systems (2016)