FIESTA 2: parallelizeable multiloop numerical calculations. The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin-Barnes representations. Other important improvements to the code are complete parallelization (even to multiple computers), high-precision arithmetics (allowing to calculate integrals which were undoable before), new integrators, Speer sectors as a strategy, the possibility to evaluate more general parametric integrals.

References in zbMATH (referenced in 37 articles )

Showing results 1 to 20 of 37.
Sorted by year (citations)

1 2 next

  1. Bern, Zvi; Cheung, Clifford; Roiban, Radu; Shen, Chia-Hsien; Solon, Mikhail P.; Zeng, Mao: Black hole binary dynamics from the double copy and effective theory (2019)
  2. Bianchi, Marco S.; Leoni, Matias: A (QQ \toQQ) planar double box in canonical form (2018)
  3. Boels, Rutger H.; Huber, Tobias; Yang, Gang: The Sudakov form factor at four loops in maximal super Yang-Mills theory (2018)
  4. Borowka, Sophia; Gehrmann, Thomas; Hulme, Daniel: Systematic approximation of multi-scale Feynman integrals (2018)
  5. Badger, Simon; Mogull, Gustav; Peraro, Tiziano: Local integrands for two-loop all-plus Yang-Mills amplitudes (2016)
  6. Boels, Rutger H.; Kniehl, Bernd A.; Yang, Gang: Master integrals for the four-loop Sudakov form factor (2016)
  7. Feng, Feng: \textscAPart2: a generalized \textscMathematica\textttApartfunction (2016)
  8. Grozin, Andrey G.; Henn, Johannes M.; Korchemsky, Gregory P.; Marquard, Peter: The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions (2016)
  9. Henn, Johannes M.; Smirnov, Alexander V.; Smirnov, Vladimir A.: Analytic results for planar three-loop integrals for massive form factors (2016)
  10. Ievgen Dubovyk, Janusz Gluza, Tord Riemann, Johann Usovitsch: Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions (2016) arXiv
  11. Kozlov, Mikhail G.; Lee, Roman N.: One-loop pentagon integral in (d) dimensions from differential equations in (\epsilon)-form (2016)
  12. Smirnov, A. V.: FIESTA4: optimized Feynman integral calculations with GPU support (2016)
  13. Badger, Simon; Mogull, Gustav; Ochirov, Alexander; O’Connell, Donal: A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory (2015)
  14. Borowka, S.; Heinrich, G.; Jones, S. P.; Kerner, M.; Schlenk, J.; Zirke, T.: SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop (2015)
  15. Chen, Long-Bin; Qiao, Cong-Feng: Two-loop QCD corrections to (B_c) meson leptonic decays (2015)
  16. Grigo, Jonathan; Hoff, Jens; Steinhauser, Matthias: Higgs boson pair production: top quark mass effects at NLO and NNLO (2015)
  17. Panzer, Erik: Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals (2015)
  18. von Manteuffel, Andreas; Panzer, Erik; Schabinger, Robert M.: A quasi-finite basis for multi-loop Feynman integrals (2015)
  19. Caron-Huot, Simon; Henn, Johannes M.: Iterative structure of finite loop integrals (2014)
  20. Gnendiger, Christoph; Signer, Adrian; Stöckinger, Dominik: The infrared structure of QCD amplitudes and (H \togg) in FDH and DRED (2014)

1 2 next