FIRE5

FIRE5: a C++ implementation of Feynman integral REduction. In this paper the C++ version of FIRE is presented – a powerful program performing Feynman integral reduction to master integrals. All previous versions used only Wolfram Mathematica, the current version mostly uses Wolfram Mathematica as a front-end. However, the most complicated part, the reduction itself can now be done by C++, which significantly improves the performance and allows one to reduce Feynman integrals in previously impossible situations.


References in zbMATH (referenced in 14 articles )

Showing results 1 to 14 of 14.
Sorted by year (citations)

  1. Berezhnoy, A.V.; Likhoded, A.K.; Onishchenko, A.I.; Poslavsky, S.V.: Next-to-leading order QCD corrections to paired $B_c$ production in $e^+e^-$ annihilation (2017)
  2. Bern, Zvi; Enciso, Michael; Parra-Martinez, Julio; Zeng, Mao: Manifesting enhanced cancellations in supergravity: integrands versus integrals (2017)
  3. Bianchi, Marco S.; Griguolo, Luca; Mauri, Andrea; Penati, Silvia; Preti, Michelangelo; Seminara, Domenico: Towards the exact Bremsstrahlung function of ABJM theory (2017)
  4. Bosma, Jorrit; Sogaard, Mads; Zhang, Yang: Maximal cuts in arbitrary dimension (2017)
  5. Chetyrkin, K.G.; Zoller, M.F.: Four-loop renormalization of QCD with a reducible fermion representation of the gauge group: anomalous dimensions and renormalization constants (2017)
  6. Harley, Mark; Moriello, Francesco; Schabinger, Robert M.: Baikov-Lee representations of cut Feynman integrals (2017)
  7. Hasselhuhn, Alexander; Luthe, Thomas; Steinhauser, Matthias: On top quark mass effects to $gg \rightarrow ZH$ at NLO (2017)
  8. Henn, Johannes; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias: Massive three-loop form factor in the planar limit (2017)
  9. Meyer, Christoph: Transforming differential equations of multi-loop Feynman integrals into canonical form (2017)
  10. Alessandro Georgoudis, Kasper J. Larsen, Yang Zhang: Azurite: An algebraic geometry based package for finding bases of loop integrals (2016) arXiv
  11. Boels, Rutger H.; Kniehl, Bernd A.; Yang, Gang: Master integrals for the four-loop Sudakov form factor (2016)
  12. Borowka, S.; Heinrich, G.; Jones, S.P.; Kerner, M.; Schlenk, J.; Zirke, T.: SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop (2015)
  13. Ruijl, B.; Ueda, T.; Vermaseren, J.A.M.: The diamond rule for multi-loop Feynman diagrams (2015)
  14. Smirnov, A.V.: FIRE5: a C++ implementation of Feynman integral REduction (2015)