NuSol -- numerical solver for the 3D stationary nuclear Schrödinger equation. The classification of short hydrogen bonds depends on several factors including the shape and energy spacing between the nuclear eigenstates of the hydrogen. par Here, we describe the NuSol program in which three classes of algorithms were implemented to solve the 1D, 2D and 3D time independent nuclear Schr”odinger equation. The Schr”odinger equation was solved using the finite differences based Numerov’s method which was extended to higher dimensions, the more accurate pseudo-spectral Chebyshev collocation method and the {it sinc} discrete variable representation by Colbert and Miller. NuSol can be applied to solve the Schr”odinger equation for arbitrary analytical or numerical potentials with focus on nuclei bound by the potential of their molecular environment. We validated the methods against literature values for the 2D Henon-Heiles potential, the 3D linearly coupled sextic oscillators and applied them to study hydrogen bonding in the malonaldehyde derivate 4-cyano-2,2,6,6-tetramethyl-3,5-heptanedione. par With NuSol, the extent of nuclear delocalization in a given molecular potential can directly be calculated without relying on linear reaction coordinates in 3D molecular space.

References in zbMATH (referenced in 1 article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Graen, Timo; Grubmüller, Helmut: NuSol -- numerical solver for the 3D stationary nuclear Schrödinger equation (2016)