repRNA
repRNA: a web server for generating various feature vectors of RNA sequences. With the rapid growth of RNA sequences generated in the postgenomic age, it is highly desired to develop a flexible method that can generate various kinds of vectors to represent these sequences by focusing on their different features. This is because nearly all the existing machine-learning methods, such as SVM (support vector machine) and KNN (k-nearest neighbor), can only handle vectors but not sequences. To meet the increasing demands and speed up the genome analyses, we have developed a new web server, called ”representations of RNA sequences” (repRNA). Compared with the existing methods, repRNA is much more comprehensive, flexible and powerful, as reflected by the following facts: (1) it can generate 11 different modes of feature vectors for users to choose according to their investigation purposes; (2) it allows users to select the features from 22 built-in physicochemical properties and even those defined by users’ own; (3) the resultant feature vectors and the secondary structures of the corresponding RNA sequences can be visualized. The repRNA web server is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/repRNA/ .
Keywords for this software
References in zbMATH (referenced in 4 articles )
Showing results 1 to 4 of 4.
Sorted by year (- Amiri, Saeid; Dinov, Ivo D.: Comparison of genomic data via statistical distribution (2016)
- Jiao, Ya-Sen; Du, Pu-Feng: Predicting Golgi-resident protein types using pseudo amino acid compositions: approaches with positional specific physicochemical properties (2016)
- Jiao, Ya-Sen; Du, Pu-Feng: Prediction of Golgi-resident protein types using general form of Chou’s pseudo-amino acid compositions: approaches with minimal redundancy maximal relevance feature selection (2016)
- Ju, Zhe; Cao, Jun-Zhe; Gu, Hong: iLM-2L: a two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou’s general PseAAC (2015)
Further publications can be found at: http://bioinformatics.hitsz.edu.cn/repRNA/citation/