Voro++

Voro++: a three-dimensional Voronoi cell library in C++. Voro++ is a software library for carrying out three-dimensional computations of the Voronoi tessellation. A distinguishing feature of the Voro++ library is that it carries out cell-based calculations, computing the Voronoi cell for each particle individually. It is particularly well-suited for applications that rely on cell-based statistics, where features of Voronoi cells (eg. volume, centroid, number of faces) can be used to analyze a system of particles. Voro++ comprises of several C++ classes that can be built as a static library. A command-line utility is also provided that can use most features of the code. The direct cell-by-cell construction makes the library particularly well-suited to handling special boundary conditions and walls. It employs algorithms that are tolerant for numerical precision errors, it exhibits high performance, and it has been successfully employed on very large particle systems.


References in zbMATH (referenced in 37 articles )

Showing results 1 to 20 of 37.
Sorted by year (citations)

1 2 next

  1. Beirão da Veiga, L.; Dassi, F.; Vacca, G.: The Stokes complex for virtual elements in three dimensions (2020)
  2. Beirão da Veiga, Lourenco; Dassi, Franco; Russo, Alessandro: A (C^1) virtual element method on polyhedral meshes (2020)
  3. Dassi, Franco; Lovadina, Carlo; Visinoni, M.: A three-dimensional Hellinger-Reissner virtual element method for linear elasticity problems (2020)
  4. Dassi, Franco; Scacchi, Simone: Parallel solvers for virtual element discretizations of elliptic equations in mixed form (2020)
  5. Duan, Xianglong; Quan, Chaoyu; Stamm, Benjamin: A boundary-partition-based Voronoi diagram of (d)-dimensional balls: definition, properties, and applications (2020)
  6. Galvis, Andres F.; Santos-Flórez, Pedro A.; Sollero, Paulo; de Koning, Maurice; Wrobel, Luiz C.: Multiscale model of the role of grain boundary structures in the dynamic intergranular failure of polycrystal aggregates (2020)
  7. Ji, Zhe; Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.: A new multi-resolution parallel framework for SPH (2019)
  8. Li, Xinge; Zhang, Yongjie Jessica; Yang, Xuyang; Xu, Haibo; Xu, Guoliang: Point cloud surface segmentation based on volumetric eigenfunctions of the Laplace-Beltrami operator (2019)
  9. Ortiz-Bernardin, A.; Alvarez, C.; Hitschfeld-Kahler, N.; Russo, A.; Silva-Valenzuela, R.; Olate-Sanzana, E.: Veamy: an extensible object-oriented C++ library for the virtual element method (2019)
  10. Sarath Menon, Grisell Díaz Leines, Jutta Rogal: pyscal: A python module for structural analysis of atomic environments (2019) not zbMATH
  11. Beirão da Veiga, L.; Brezzi, F.; Dassi, F.; Marini, L. D.; Russo, A.: Lowest order virtual element approximation of magnetostatic problems (2018)
  12. Beirão da Veiga, Lourenco; Brezzi, F.; Dassi, Franco; Marini, L. D.; Russo, A.: A family of three-dimensional virtual elements with applications to magnetostatics (2018)
  13. Beirão da Veiga, Lourenço; Brezzi, Franco; Dassi, Franco; Marini, Luisa Donatelia; Russo, Alessandro: Serendipity virtual elements for general elliptic equations in three dimensions (2018)
  14. Gibou, Frederic; Fedkiw, Ronald; Osher, Stanley: A review of level-set methods and some recent applications (2018)
  15. Gulizzi, V.; Rycroft, C. H.; Benedetti, I.: Modelling intergranular and transgranular micro-cracking in polycrystalline materials (2018)
  16. Kaiser, Waldemar; Popp, Johannes; Rinderle, Michael; Albes, Tim; Gagliardi, Alessio: Generalized kinetic Monte Carlo framework for organic electronics (2018)
  17. Mehta, Y.; Neal, C.; Salari, K.; Jackson, T. L.; Balachandar, S.; Thakur, S.: Propagation of a strong shock over a random bed of spherical particles (2018)
  18. Petkova, Maya A.; Laibe, Guillaume; Bonnell, Ian A.: Fast and accurate Voronoi density gridding from Lagrangian hydrodynamics data (2018)
  19. Rocha, Felipe Figueredo; Blanco, Pablo Javier; Sánchez, Pablo Javier; Feijóo, Raúl Antonino: Multi-scale modelling of arterial tissue: linking networks of fibres to continua (2018)
  20. Alejandro Ortiz-Bernardin, Catalina Alvarez, Nancy Hitschfeld-Kahler, Alessandro Russo, Rodrigo Silva-Valenzuela, Edgardo Olate-Sanzana: Veamy: an extensible object-oriented C++ library for the virtual element method (2017) arXiv

1 2 next