FIESTA 3

FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions. The goal of this paper is to present a new major release of the program FIESTA (Feynman Integral Evaluation by a Sector decomposiTion Approach). This version presents features like cluster-parallelization, new asymptotic expansion algorithms, calculations in physical regions, new sector-decomposition strategies, as well as multiple speed, memory, and stability improvements.


References in zbMATH (referenced in 14 articles , 1 standard article )

Showing results 1 to 14 of 14.
Sorted by year (citations)

  1. Boels, Rutger H.; Huber, Tobias; Yang, Gang: The Sudakov form factor at four loops in maximal super Yang-Mills theory (2018)
  2. Borowka, Sophia; Gehrmann, Thomas; Hulme, Daniel: Systematic approximation of multi-scale Feynman integrals (2018)
  3. S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke: pySecDec: a toolbox for the numerical evaluation of multi-scale integrals (2017) arXiv
  4. Badger, Simon; Mogull, Gustav; Peraro, Tiziano: Local integrands for two-loop all-plus Yang-Mills amplitudes (2016)
  5. Boels, Rutger H.; Kniehl, Bernd A.; Yang, Gang: Master integrals for the four-loop Sudakov form factor (2016)
  6. Grozin, Andrey G.; Henn, Johannes M.; Korchemsky, Gregory P.; Marquard, Peter: The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions (2016)
  7. Kozlov, Mikhail G.; Lee, Roman N.: One-loop pentagon integral in (d) dimensions from differential equations in (\epsilon)-form (2016)
  8. Rutger Boels, Bernd A. Kniehl, Gang Yang: Towards a four-loop form factor (2016) arXiv
  9. Smirnov, A. V.: FIESTA4: optimized Feynman integral calculations with GPU support (2016)
  10. Badger, Simon; Mogull, Gustav; Ochirov, Alexander; O’Connell, Donal: A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory (2015)
  11. Borowka, S.; Heinrich, G.; Jones, S. P.; Kerner, M.; Schlenk, J.; Zirke, T.: SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop (2015)
  12. von Manteuffel, Andreas; Panzer, Erik; Schabinger, Robert M.: A quasi-finite basis for multi-loop Feynman integrals (2015)
  13. Caron-Huot, Simon; Henn, Johannes M.: Iterative structure of finite loop integrals (2014)
  14. Smirnov, A. V.: FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions (2014)