dna2vec: Consistent vector representations of variable-length k-mers. One of the ubiquitous representation of long DNA sequence is dividing it into shorter k-mer components. Unfortunately, the straightforward vector encoding of k-mer as a one-hot vector is vulnerable to the curse of dimensionality. Worse yet, the distance between any pair of one-hot vectors is equidistant. This is particularly problematic when applying the latest machine learning algorithms to solve problems in biological sequence analysis. In this paper, we propose a novel method to train distributed representations of variable-length k-mers. Our method is based on the popular word embedding model word2vec, which is trained on a shallow two-layer neural network. Our experiments provide evidence that the summing of dna2vec vectors is akin to nucleotides concatenation. We also demonstrate that there is correlation between Needleman-Wunsch similarity score and cosine similarity of dna2vec vectors.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

References in zbMATH (referenced in 1 article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Tillquist, Richard C.; Lladser, Manuel E.: Low-dimensional representation of genomic sequences (2019)