PMA

R package PMA: Penalized Multivariate Analysis. Performs Penalized Multivariate Analysis: a penalized matrix decomposition, sparse principal components analysis, and sparse canonical correlation analysis, described in the following papers: (1) Witten, Tibshirani and Hastie (2009) A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10(3):515-534. (2) Witten and Tibshirani (2009) Extensions of sparse canonical correlation analysis, with applications to genomic data. Statistical Applications in Genetics and Molecular Biology 8(1): Article 28.


References in zbMATH (referenced in 70 articles )

Showing results 1 to 20 of 70.
Sorted by year (citations)

1 2 3 4 next

  1. Cai, T. Tony; Zhang, Anru: Rate-optimal perturbation bounds for singular subspaces with applications to high-dimensional statistics (2018)
  2. Fang, Kuangnan; Fan, Xinyan; Zhang, Qingzhao; Ma, Shuangge: Integrative sparse principal component analysis (2018)
  3. Feng, Qing; Jiang, Meilei; Hannig, Jan; Marron, J. S.: Angle-based joint and individual variation explained (2018)
  4. Han, Fang; Liu, Han: ECA: high-dimensional elliptical component analysis in non-Gaussian distributions (2018)
  5. Jung, Sungkyu: Continuum directions for supervised dimension reduction (2018)
  6. Kawano, Shuichi; Fujisawa, Hironori; Takada, Toyoyuki; Shiroishi, Toshihiko: Sparse principal component regression for generalized linear models (2018)
  7. Li, Gen; Gaynanova, Irina: A general framework for association analysis of heterogeneous data (2018)
  8. Hou, Thomas Y.; Li, Qin; Zhang, Pengchuan: A sparse decomposition of low rank symmetric positive semidefinite matrices (2017)
  9. Hou, Thomas Y.; Zhang, Pengchuan: Sparse operator compression of higher-order elliptic operators with rough coefficients (2017)
  10. Zhu, Hong; Zhang, Xiaowei; Chu, Delin; Liao, Li-Zhi: Nonconvex and nonsmooth optimization with generalized orthogonality constraints: an approximate augmented Lagrangian method (2017)
  11. Adachi, Kohei; Trendafilov, Nickolay T.: Sparse principal component analysis subject to prespecified cardinality of loadings (2016)
  12. Alfons, Andreas; Croux, Christophe; Gelper, Sarah: Robust groupwise least angle regression (2016)
  13. Ames, Brendan P. W.; Hong, Mingyi: Alternating direction method of multipliers for penalized zero-variance discriminant analysis (2016)
  14. Bai, Jushan; Liao, Yuan: Efficient estimation of approximate factor models via penalized maximum likelihood (2016)
  15. Beck, Amir; Vaisbourd, Yakov: The sparse principal component analysis problem: optimality conditions and algorithms (2016)
  16. Blum, Yuna; Houée-Bigot, Magalie; Causeur, David: Sparse factor model for co-expression networks with an application using prior biological knowledge (2016)
  17. Cai, T. Tony; Ren, Zhao; Zhou, Harrison H.: Estimating structured high-dimensional covariance and precision matrices: optimal rates and adaptive estimation (2016)
  18. Coleman, Jacob; Replogle, Joseph; Chandler, Gabriel; Hardin, Johanna: Resistant multiple sparse canonical correlation (2016)
  19. Fishkind, Donniell E.; Shen, Cencheng; Park, Youngser; Priebe, Carey E.: On the incommensurability phenomenon (2016)
  20. Fraiman, Ricardo; Gimenez, Yanina; Svarc, Marcela: Seeking relevant information from a statistical model (2016)

1 2 3 4 next