R package missForest: Nonparametric Missing Value Imputation using Random Forest. The function ’missForest’ in this package is used to impute missing values particularly in the case of mixed-type data. It uses a random forest trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data including complex interactions and non-linear relations. It yields an out-of-bag (OOB) imputation error estimate without the need of a test set or elaborate cross-validation. It can be run in parallel to save computation time.

References in zbMATH (referenced in 22 articles )

Showing results 1 to 20 of 22.
Sorted by year (citations)

1 2 next

  1. Hasler, Caren; Craiu, Radu V.: Nonparametric imputation method for nonresponse in surveys (2020)
  2. Jiang, Wei; Josse, Julie; Lavielle, Marc; TraumaBase Group: Logistic regression with missing covariates -- parameter estimation, model selection and prediction within a joint-modeling framework (2020)
  3. Kolb, Samuel; Teso, Stefano; Dries, Anton; De Raedt, Luc: Predictive spreadsheet autocompletion with constraints (2020)
  4. Biessmann, Felix; Rukat, Tammo; Schmidt, Phillipp; Naidu, Prathik; Schelter, Sebastian; Taptunov, Andrey; Lange, Dustin; Salinas, David: DataWig: missing value imputation for tables (2019)
  5. Ramosaj, Burim; Pauly, Markus: Predicting missing values: a comparative study on non-parametric approaches for imputation (2019)
  6. Bertsimas, Dimitris; Pawlowski, Colin; Zhuo, Ying Daisy: From predictive methods to missing data imputation: an optimization approach (2018)
  7. Scanagatta, Mauro; Corani, Giorgio; Zaffalon, Marco; Yoo, Jaemin; Kang, U.: Efficient learning of bounded-treewidth Bayesian networks from complete and incomplete data sets (2018)
  8. Solaro, N.; Barbiero, A.; Manzi, G.; Ferrari, P. A.: A simulation comparison of imputation methods for quantitative data in the presence of multiple data patterns (2018)
  9. Veretennikova, Maria A.; Sikorskii, Alla; Boivin, Michael J.: Parameters of stochastic models for electroencephalogram data as biomarkers for child’s neurodevelopment after cerebral malaria (2018)
  10. Audigier, Vincent; Husson, François; Josse, Julie: MIMCA: multiple imputation for categorical variables with multiple correspondence analysis (2017)
  11. Faisal, Shahla; Tutz, Gerhard: Missing value imputation for gene expression data by tailored nearest neighbors (2017)
  12. Solaro, Nadia; Barbiero, Alessandro; Manzi, Giancarlo; Ferrari, Pier Alda: A sequential distance-based approach for imputing missing data: forward imputation (2017)
  13. Alexander Kowarik; Matthias Templ: Imputation with the R Package VIM (2016) not zbMATH
  14. Audigier, Vincent; Husson, François; Josse, Julie: A principal component method to impute missing values for mixed data (2016)
  15. Bühlmann, Peter; Leonardi, Florencia: Comments on: “A random forest guided tour” (2016)
  16. Julie Josse; François Husson: missMDA: A Package for Handling Missing Values in Multivariate Data Analysis (2016) not zbMATH
  17. Julie Josse, Sylvain Sardy, Stefan Wager: denoiseR: A Package for Low Rank Matrix Estimation (2016) arXiv
  18. Neeraj Bokde, Kishore Kulat, Marcus W Beck, Gualberto Asencio-Cortes: R package imputeTestbench to compare imputations methods for univariate time series (2016) arXiv
  19. Kapelner, Adam; Bleich, Justin: Prediction with missing data via Bayesian additive regression trees (2015)
  20. Wu, Tong Tong; Lange, Kenneth: Matrix completion discriminant analysis (2015)

1 2 next