Algorithm 39

Algorithm 39: Clusterwise linear regression. The combinatorial problem of clusterwise discrete linear approximation is defined as finding a given number of clusters of observations such that the overall sum of error sum of squares within those clusters becomes a minimum. The FORTRAN implementation of a heuristic solution method and a numerical example are given. Algorithm 48: a fast algorithm for clusterwise linear regression.


References in zbMATH (referenced in 35 articles )

Showing results 1 to 20 of 35.
Sorted by year (citations)

1 2 next

  1. Joki, Kaisa; Bagirov, Adil M.; Karmitsa, Napsu; Mäkelä, Marko M.; Taheri, Sona: Clusterwise support vector linear regression (2020)
  2. Bagirov, A. M.; Ugon, J.: Nonsmooth DC programming approach to clusterwise linear regression: optimality conditions and algorithms (2018)
  3. Bagirov, Adil M.; Taheri, Sona: DC programming algorithm for clusterwise linear (L_1) regression (2017)
  4. Dotto, Francesco; Farcomeni, Alessio; García-Escudero, Luis Angel; Mayo-Iscar, Agustín: A fuzzy approach to robust regression clustering (2017)
  5. Lim, Hwa Kyung; Narisetty, Naveen N.; Cheon, Sooyoung: Robust multivariate mixture regression models with incomplete data (2017)
  6. Wilderjans, Tom Frans; Vande Gaer, Eva; Kiers, Henk A. L.; Van Mechelen, Iven; Ceulemans, Eva: Principal covariates clusterwise regression (PCCR): accounting for multicollinearity and population heterogeneity in hierarchically organized data (2017)
  7. Reis dos Santos, M. Isabel; Reis dos Santos, Pedro M.: Switching regression metamodels in stochastic simulation (2016)
  8. Zeller, Camila B.; Cabral, Celso R. B.; Lachos, Víctor H.: Robust mixture regression modeling based on scale mixtures of skew-normal distributions (2016)
  9. Bagirov, Adil M.; Ugon, Julien; Mirzayeva, Hijran G.: An algorithm for clusterwise linear regression based on smoothing techniques (2015)
  10. Bagirov, Adil M.; Ugon, Julien; Mirzayeva, Hijran G.: Nonsmooth optimization algorithm for solving clusterwise linear regression problems (2015)
  11. Manwani, Naresh; Sastry, P. S.: (K)-plane regression (2015)
  12. Yamashita, Naoto; Mayekawa, Shin-ichi: A new biplot procedure with joint classification of objects and variables by fuzzy (c)-means clustering (2015)
  13. Carbonneau, Réal A.; Caporossi, Gilles; Hansen, Pierre: Globally optimal clusterwise regression by column generation enhanced with heuristics, sequencing and ending subset optimization (2014)
  14. Bagirov, Adil M.; Ugon, Julien; Mirzayeva, Hijran: Nonsmooth nonconvex optimization approach to clusterwise linear regression problems (2013)
  15. Tan, Tianyu; Suk, Hye Won; Hwang, Heungsun; Lim, Jooseop: Functional fuzzy clusterwise regression analysis (2013)
  16. Carbonneau, Réal A.; Caporossi, Gilles; Hansen, Pierre: Extensions to the repetitive branch and bound algorithm for globally optimal clusterwise regression (2012)
  17. Köhn, Hans-Friedrich: A review of multiobjective programming and its application in quantitative psychology (2011)
  18. Qian, Guoqi; Wu, Yuehua: Estimation and selection in regression clustering (2011)
  19. Suk, Hye Won; Hwang, Heungsun: Regularized fuzzy clusterwise ridge regression (2010)
  20. Yan, Guohua; Welch, William J.; Zamar, Ruben H.: Model-based linear clustering (2010)

1 2 next