petsc4py
PETSc for Python: This document describes petsc4py, a Python port to the PETSc libraries. PETSc (the Portable, Extensible Toolkit for Scientific Computation) is a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations. It employs the MPI standard for all message-passing communication. This package provides an important subset of PETSc functionalities and uses NumPy to efficiently manage input and output of array data.
Keywords for this software
References in zbMATH (referenced in 28 articles )
Showing results 1 to 20 of 28.
Sorted by year (- Chen, Tyler; Carson, Erin: Predict-and-recompute conjugate gradient variants (2020)
- Nennig, Benoit; Perrey-Debain, Emmanuel: A high order continuation method to locate exceptional points and to compute Puiseux series with applications to acoustic waveguides (2020)
- Cimrman, Robert; Lukeš, Vladimír; Rohan, Eduard: Multiscale finite element calculations in Python using sfepy (2019)
- Cotter, Colin; Crisan, Dan; Holm, Darryl D.; Pan, Wei; Shevchenko, Igor: Numerically modeling stochastic Lie transport in fluid dynamics (2019)
- Gjerde, Ingeborg G.; Kumar, Kundan; Nordbotten, Jan M.; Wohlmuth, Barbara: Splitting method for elliptic equations with line sources (2019)
- Kamensky, David; Bazilevs, Yuri: \textsctIGAr: automating isogeometric analysis with \textscFEniCS (2019)
- Maddison, James R.; Goldberg, Daniel N.; Goddard, Benjamin D.: Automated calculation of higher order partial differential equation constrained derivative information (2019)
- Ruiz-Gironés, Eloi; Roca, Xevi: Imposing boundary conditions to match a CAD virtual geometry for the mesh curving problem (2019)
- Budd, Chris J.; McRae, Andrew T. T.; Cotter, Colin J.: The scaling and skewness of optimally transported meshes on the sphere (2018)
- Chang, Justin; Fabien, Maurice S.; Knepley, Matthew G.; Mills, Richard T.: Comparative study of finite element methods using the time-accuracy-size (TAS) spectrum analysis (2018)
- Cimrman, Robert; Novák, Matyáš; Kolman, Radek; Tuma, Miroslav; Plešek, Jiří; Vackář, Jiří: Convergence study of isogeometric analysis based on Bézier extraction in electronic structure calculations (2018)
- Garcia, D.; Ghommem, M.; Collier, N.; Varga, B. O. N.; Calo, V. M.: PyFly: a fast, portable aerodynamics simulator (2018)
- Kirby, Robert C.: A general approach to transforming finite elements (2018)
- Kirby, Robert C.; Mitchell, Lawrence: Solver composition across the PDE/linear algebra barrier (2018)
- McRae, Andrew T. T.; Cotter, Colin J.; Budd, Chris J.: Optimal-transport -- based mesh adaptivity on the plane and sphere using finite elements (2018)
- Paganini, Alberto; Wechsung, Florian; Farrell, Patrick E.: Higher-order moving mesh methods for PDE-constrained shape optimization (2018)
- Shipton, J.; Gibson, T. H.; Cotter, C. J.: Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on the sphere (2018)
- Thomas H. Gibson, Lawrence Mitchell, David A. Ham, Colin J. Cotter: Slate: extending Firedrake’s domain-specific abstraction to hybridized solvers for geoscience and beyond (2018) arXiv
- Chang, J.; Nakshatrala, K. B.: Variational inequality approach to enforcing the non-negative constraint for advection-diffusion equations (2017)
- Luporini, Fabio; Ham, David A.; Kelly, Paul H. J.: An algorithm for the optimization of finite element integration loops (2017)