PETSc for Python: This document describes petsc4py, a Python port to the PETSc libraries. PETSc (the Portable, Extensible Toolkit for Scientific Computation) is a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations. It employs the MPI standard for all message-passing communication. This package provides an important subset of PETSc functionalities and uses NumPy to efficiently manage input and output of array data.

References in zbMATH (referenced in 28 articles )

Showing results 1 to 20 of 28.
Sorted by year (citations)

1 2 next

  1. Chen, Tyler; Carson, Erin: Predict-and-recompute conjugate gradient variants (2020)
  2. Nennig, Benoit; Perrey-Debain, Emmanuel: A high order continuation method to locate exceptional points and to compute Puiseux series with applications to acoustic waveguides (2020)
  3. Cimrman, Robert; Lukeš, Vladimír; Rohan, Eduard: Multiscale finite element calculations in Python using sfepy (2019)
  4. Cotter, Colin; Crisan, Dan; Holm, Darryl D.; Pan, Wei; Shevchenko, Igor: Numerically modeling stochastic Lie transport in fluid dynamics (2019)
  5. Gjerde, Ingeborg G.; Kumar, Kundan; Nordbotten, Jan M.; Wohlmuth, Barbara: Splitting method for elliptic equations with line sources (2019)
  6. Kamensky, David; Bazilevs, Yuri: \textsctIGAr: automating isogeometric analysis with \textscFEniCS (2019)
  7. Maddison, James R.; Goldberg, Daniel N.; Goddard, Benjamin D.: Automated calculation of higher order partial differential equation constrained derivative information (2019)
  8. Ruiz-Gironés, Eloi; Roca, Xevi: Imposing boundary conditions to match a CAD virtual geometry for the mesh curving problem (2019)
  9. Budd, Chris J.; McRae, Andrew T. T.; Cotter, Colin J.: The scaling and skewness of optimally transported meshes on the sphere (2018)
  10. Chang, Justin; Fabien, Maurice S.; Knepley, Matthew G.; Mills, Richard T.: Comparative study of finite element methods using the time-accuracy-size (TAS) spectrum analysis (2018)
  11. Cimrman, Robert; Novák, Matyáš; Kolman, Radek; Tuma, Miroslav; Plešek, Jiří; Vackář, Jiří: Convergence study of isogeometric analysis based on Bézier extraction in electronic structure calculations (2018)
  12. Garcia, D.; Ghommem, M.; Collier, N.; Varga, B. O. N.; Calo, V. M.: PyFly: a fast, portable aerodynamics simulator (2018)
  13. Kirby, Robert C.: A general approach to transforming finite elements (2018)
  14. Kirby, Robert C.; Mitchell, Lawrence: Solver composition across the PDE/linear algebra barrier (2018)
  15. McRae, Andrew T. T.; Cotter, Colin J.; Budd, Chris J.: Optimal-transport -- based mesh adaptivity on the plane and sphere using finite elements (2018)
  16. Paganini, Alberto; Wechsung, Florian; Farrell, Patrick E.: Higher-order moving mesh methods for PDE-constrained shape optimization (2018)
  17. Shipton, J.; Gibson, T. H.; Cotter, C. J.: Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on the sphere (2018)
  18. Thomas H. Gibson, Lawrence Mitchell, David A. Ham, Colin J. Cotter: Slate: extending Firedrake’s domain-specific abstraction to hybridized solvers for geoscience and beyond (2018) arXiv
  19. Chang, J.; Nakshatrala, K. B.: Variational inequality approach to enforcing the non-negative constraint for advection-diffusion equations (2017)
  20. Luporini, Fabio; Ham, David A.; Kelly, Paul H. J.: An algorithm for the optimization of finite element integration loops (2017)

1 2 next