mlrnd

Mittag–Leffler random number generator. Matlab function mlrnd. Returns a matrix of IID random numbers distributed according to the one-parameter Mittag-Leffler distribution with index (or exponent) beta and scale parameter gamma_t. The size of the returned matrix is the same as that of the input matrices beta and gamma_t, that must match. Alternatively, if beta and gamma_t are scalars, mlrnd(beta, gamma_t, m) returns an m by m matrix, and mlrnd(beta, gamma_t, m, n) returns an m by n matrix.


References in zbMATH (referenced in 32 articles )

Showing results 1 to 20 of 32.
Sorted by year (citations)

1 2 next

  1. Leonenko, Nikolai; Scalas, Enrico; Trinh, Mailan: Limit theorems for the fractional nonhomogeneous Poisson process (2019)
  2. Li, ZhiPeng; Sun, HongGuang; Sibatov, Renat T.: An investigation on continuous time random walk model for bedload transport (2019)
  3. Zhang, Hong; Li, Guo-Hua: Fluid reactive anomalous transport with random waiting time depending on the preceding jump length (2019)
  4. Liemert, André; Kienle, Alwin: Fractional radiative transport in the diffusion approximation (2018)
  5. Burrage, Kevin; Burrage, Pamela; Leier, Andre; Marquez-Lago, Tatiana: A review of stochastic and delay simulation approaches in both time and space in computational cell biology (2017)
  6. Liemert, André; Kienle, Alwin: Radiative transport equation for the Mittag-Leffler path length distribution (2017)
  7. Li, Zhuo; Liu, Lu; Dehghan, Sina; Chen, Yangquan; Xue, Dingyü: A review and evaluation of numerical tools for fractional calculus and fractional order controls (2017)
  8. MacNamara, Shev; Henry, Bruce; McLean, William: Fractional Euler limits and their applications (2017)
  9. Yang, Fan; Ren, Yu-Peng; Li, Xiao-Xiao; Li, Dun-Gang: Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation (2017)
  10. Elsaid, A.; Abdel Latif, M. S.; Maneea, M.: Similarity solutions for multiterm time-fractional diffusion equation (2016)
  11. Liang, Yingjie; Chen, Wen; Magin, Richard L.: Connecting complexity with spectral entropy using the Laplace transformed solution to the fractional diffusion equation (2016)
  12. Pagnini, Gianni; Paradisi, Paolo: A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation (2016)
  13. Dybiec, Bartłomiej; Sokolov, Igor M.: Estimation of the smallest eigenvalue in fractional escape problems: semi-analytics and fits (2015)
  14. Gong, Chunye; Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie: Computational challenge of fractional differential equations and the potential solutions: a survey (2015)
  15. Žecová, Monika; Terpák, Ján: Heat conduction modeling by using fractional-order derivatives (2015)
  16. Žecová, Monika; Terpák, Ján: Fractional heat conduction models and thermal diffusivity determination (2015)
  17. Godinho, Cresus F. L.; Weberszpil, Jose; Helayël Neto, J. A.: Fractional canonical quantization: a parallel with noncommutativity (2014)
  18. Pagnini, Gianni: Short note on the emergence of fractional kinetics (2014)
  19. Weberszpil, J.; Helayël-Neto, J. A.: Anomalous (g)-factors for charged leptons in a fractional coarse-grained approach (2014)
  20. Fulger, Daniel; Scalas, Enrico; Germano, Guido: Random numbers from the tails of probability distributions using the transformation method (2013)

1 2 next