mlrnd
Mittag–Leffler random number generator. Matlab function mlrnd. Returns a matrix of IID random numbers distributed according to the one-parameter Mittag-Leffler distribution with index (or exponent) beta and scale parameter gamma_t. The size of the returned matrix is the same as that of the input matrices beta and gamma_t, that must match. Alternatively, if beta and gamma_t are scalars, mlrnd(beta, gamma_t, m) returns an m by m matrix, and mlrnd(beta, gamma_t, m, n) returns an m by n matrix.
Keywords for this software
References in zbMATH (referenced in 35 articles )
Showing results 1 to 20 of 35.
Sorted by year (- Abadias, Luciano; Estrada-Rodriguez, Gissell; Estrada, Ernesto: Fractional-order susceptible-infected model: definition and applications to the study of COVID-19 main protease (2020)
- Han, Ping; Xu, Wei; Wang, Liang; Ma, Shichao: The most probable response of some prototypical stochastic nonlinear dynamical systems (2020)
- Tarasov, Vasily E.: Cagan model of inflation with power-law memory effects (2020)
- Leonenko, Nikolai; Scalas, Enrico; Trinh, Mailan: Limit theorems for the fractional nonhomogeneous Poisson process (2019)
- Li, ZhiPeng; Sun, HongGuang; Sibatov, Renat T.: An investigation on continuous time random walk model for bedload transport (2019)
- Zhang, Hong; Li, Guo-Hua: Fluid reactive anomalous transport with random waiting time depending on the preceding jump length (2019)
- Liemert, André; Kienle, Alwin: Fractional radiative transport in the diffusion approximation (2018)
- Burrage, Kevin; Burrage, Pamela; Leier, Andre; Marquez-Lago, Tatiana: A review of stochastic and delay simulation approaches in both time and space in computational cell biology (2017)
- Liemert, André; Kienle, Alwin: Radiative transport equation for the Mittag-Leffler path length distribution (2017)
- Li, Zhuo; Liu, Lu; Dehghan, Sina; Chen, Yangquan; Xue, Dingyü: A review and evaluation of numerical tools for fractional calculus and fractional order controls (2017)
- MacNamara, Shev; Henry, Bruce; McLean, William: Fractional Euler limits and their applications (2017)
- Yang, Fan; Ren, Yu-Peng; Li, Xiao-Xiao; Li, Dun-Gang: Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation (2017)
- Elsaid, A.; Abdel Latif, M. S.; Maneea, M.: Similarity solutions for multiterm time-fractional diffusion equation (2016)
- Liang, Yingjie; Chen, Wen; Magin, Richard L.: Connecting complexity with spectral entropy using the Laplace transformed solution to the fractional diffusion equation (2016)
- Pagnini, Gianni; Paradisi, Paolo: A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation (2016)
- Dybiec, Bartłomiej; Sokolov, Igor M.: Estimation of the smallest eigenvalue in fractional escape problems: semi-analytics and fits (2015)
- Gong, Chunye; Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie: Computational challenge of fractional differential equations and the potential solutions: a survey (2015)
- Žecová, Monika; Terpák, Ján: Fractional heat conduction models and thermal diffusivity determination (2015)
- Žecová, Monika; Terpák, Ján: Heat conduction modeling by using fractional-order derivatives (2015)
- Godinho, Cresus F. L.; Weberszpil, Jose; Helayël Neto, J. A.: Fractional canonical quantization: a parallel with noncommutativity (2014)