iSuc-PseOpt

iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Succinylation is a posttranslational modification (PTM) where a succinyl group is added to a Lys (K) residue of a protein molecule. Lysine succinylation plays an important role in orchestrating various biological processes, but it is also associated with some diseases. Therefore, we are challenged by the following problem from both basic research and drug development: given an uncharacterized protein sequence containing many Lys residues, which one of them can be succinylated, and which one cannot? With the avalanche of protein sequences generated in the postgenomic age, the answer to the problem has become even more urgent. Fortunately, the statistical significance experimental data for succinylated sites in proteins have become available very recently, an indispensable prerequisite for developing a computational method to address this problem. By incorporating the sequence-coupling effects into the general pseudo amino acid composition and using KNNC (K-nearest neighbors cleaning) treatment and IHTS (inserting hypothetical training samples) treatment to optimize the training dataset, a predictor called iSuc-PseOpt has been developed. Rigorous cross-validations indicated that it remarkably outperformed the existing method. A user-friendly web-server for iSuc-PseOpt has been established at http://www.jci-bioinfo.cn/iSuc-PseOpt, where users can easily get their desired results without needing to go through the complicated mathematical equations involved.


References in zbMATH (referenced in 23 articles )

Showing results 1 to 20 of 23.
Sorted by year (citations)

1 2 next

  1. Adilina, Sheikh; Farid, Dewan Md; Shatabda, Swakkhar: Effective DNA binding protein prediction by using key features via Chou’s general PseAAC (2019)
  2. Ahmad, Jamal; Hayat, Maqsood: MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components (2019)
  3. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  4. Khan, Yaser Daanial; Jamil, Mehreen; Hussain, Waqar; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments (2019)
  5. Ning, Qiao; Ma, Zhiqiang; Zhao, Xiaowei: Dforml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou’s 5-step rule and pseudo components (2019)
  6. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  7. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  8. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  9. Zhao, Xiaowei; Zhang, Ye; Ning, Qiao; Zhang, Hongrui; Ji, Jinchao; Yin, Minghao: Identifying N(^6)-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer (2019)
  10. Akbar, Shahid; Hayat, Maqsood: iMethyl-STTNC: identification of N(^6)-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences (2018)
  11. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  12. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  13. Jia, Cangzhi; Yang, Qing; Zou, Quan: NucPosPred: predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC (2018)
  14. Ju, Zhe; Wang, Shi-Yun: Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm (2018)
  15. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  16. Qiu, Wenying; Li, Shan; Cui, Xiaowen; Yu, Zhaomin; Wang, Minghui; Du, Junwei; Peng, Yanjun; Yu, Bin: Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou’s pseudo-amino acid composition (2018)
  17. Sankari, E. Siva; Manimegalai, D.: Predicting membrane protein types by incorporating a novel feature set into Chou’s general PseAAC (2018)
  18. Zhang, Shengli; Duan, Xin: Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC (2018)
  19. Dehzangi, Abdollah; López, Yosvany; Lal, Sunil Pranit; Taherzadeh, Ghazaleh; Michaelson, Jacob; Sattar, Abdul; Tsunoda, Tatsuhiko; Sharma, Alok: PSSM-Suc: accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction (2017)
  20. Khan, Muslim; Hayat, Maqsood; Khan, Sher Afzal; Ahmad, Saeed; Iqbal, Nadeem: Bi-PSSM: position specific scoring matrix based intelligent computational model for identification of mycobacterial membrane proteins (2017)

1 2 next